F. Bastida, Kambiz Mootab Laleh, J. González-Andújar
{"title":"利用空气热时间预测灰麦草幼苗出苗时间。地中海气候下的无菌燕麦","authors":"F. Bastida, Kambiz Mootab Laleh, J. González-Andújar","doi":"10.3934/agrfood.2022015","DOIUrl":null,"url":null,"abstract":"Avena sterilis subsp. sterilis (sterile oat) is a troublesome grass weed of winter cereals both in its native range encompassing the Mediterranean up to South Asia, and in regions of America, Northern Europe and Australia where it is introduced. A better understanding of seedling emergence patterns of this weed in cereal fields can help control at early growth stages benefiting efficacy under a changing climate. With this aim, the objective of this research was to develop and validate a field emergence model for this weed based on cumulative air thermal time (CTT, ℃ day). Experiments for model setting and evaluation were carried out in experimental and commercial fields in southern Spain. Two alternative models, Gompertz and Weibull, were compared for their ability to represent emergence time course. The Weibull model provided the best fit to the data. Evaluation through independent experiments showed good model performance in predicting seedling emergence. According to the developed model, the onset of emergence takes place at 130 CTT, and 50% and 90% emergence is achieved at 448 and 632 CTT, respectively. Results indicate that this model could be useful for growers as a tool for decision-making in A. sterilis control.","PeriodicalId":44793,"journal":{"name":"AIMS Agriculture and Food","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using air thermal time to predict the time course of seedling emergence of Avena sterilis subsp. sterilis (sterile oat) under Mediterranean climate\",\"authors\":\"F. Bastida, Kambiz Mootab Laleh, J. González-Andújar\",\"doi\":\"10.3934/agrfood.2022015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Avena sterilis subsp. sterilis (sterile oat) is a troublesome grass weed of winter cereals both in its native range encompassing the Mediterranean up to South Asia, and in regions of America, Northern Europe and Australia where it is introduced. A better understanding of seedling emergence patterns of this weed in cereal fields can help control at early growth stages benefiting efficacy under a changing climate. With this aim, the objective of this research was to develop and validate a field emergence model for this weed based on cumulative air thermal time (CTT, ℃ day). Experiments for model setting and evaluation were carried out in experimental and commercial fields in southern Spain. Two alternative models, Gompertz and Weibull, were compared for their ability to represent emergence time course. The Weibull model provided the best fit to the data. Evaluation through independent experiments showed good model performance in predicting seedling emergence. According to the developed model, the onset of emergence takes place at 130 CTT, and 50% and 90% emergence is achieved at 448 and 632 CTT, respectively. Results indicate that this model could be useful for growers as a tool for decision-making in A. sterilis control.\",\"PeriodicalId\":44793,\"journal\":{\"name\":\"AIMS Agriculture and Food\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Agriculture and Food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/agrfood.2022015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Agriculture and Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/agrfood.2022015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Using air thermal time to predict the time course of seedling emergence of Avena sterilis subsp. sterilis (sterile oat) under Mediterranean climate
Avena sterilis subsp. sterilis (sterile oat) is a troublesome grass weed of winter cereals both in its native range encompassing the Mediterranean up to South Asia, and in regions of America, Northern Europe and Australia where it is introduced. A better understanding of seedling emergence patterns of this weed in cereal fields can help control at early growth stages benefiting efficacy under a changing climate. With this aim, the objective of this research was to develop and validate a field emergence model for this weed based on cumulative air thermal time (CTT, ℃ day). Experiments for model setting and evaluation were carried out in experimental and commercial fields in southern Spain. Two alternative models, Gompertz and Weibull, were compared for their ability to represent emergence time course. The Weibull model provided the best fit to the data. Evaluation through independent experiments showed good model performance in predicting seedling emergence. According to the developed model, the onset of emergence takes place at 130 CTT, and 50% and 90% emergence is achieved at 448 and 632 CTT, respectively. Results indicate that this model could be useful for growers as a tool for decision-making in A. sterilis control.
期刊介绍:
AIMS Agriculture and Food covers a broad array of topics pertaining to agriculture and food, including, but not limited to: Agricultural and food production and utilization Food science and technology Agricultural and food engineering Food chemistry and biochemistry Food materials Physico-chemical, structural and functional properties of agricultural and food products Agriculture and the environment Biorefineries in agricultural and food systems Food security and novel alternative food sources Traceability and regional origin of agricultural and food products Authentication of food and agricultural products Food safety and food microbiology Waste reduction in agriculture and food production and processing Animal science, aquaculture, husbandry and veterinary medicine Resources utilization and sustainability in food and agricultural production and processing Horticulture and plant science Agricultural economics.