{"title":"气泡介导的RNA和DNA聚合","authors":"R. Marks","doi":"10.3934/biophy.2022009","DOIUrl":null,"url":null,"abstract":"Research dedicated to trace rotational motion of bubbles in saline water revealed that these may generate either single cationic or cationic/anionic motions, including spliced double helix flow. In all cases, the aggregated ionic flows propagate in spiraling as well as rotational manner. However, if bi-ionic or double helix motion is generated, the flow is oppositely directed and has opposite electric charges. Next, the assembled flow is forced to pirouette within the bubble vortex. During that processing the narrowing of spiraling flow takes place and result in increase of revolutions to even millions per second. As a result, a significant friction is induced between revolving ionic hydrates allowing continuous detachment of electrons from covalent atomic shells of electropositive elements. Then, free electrons may be attracted by electronegative elements that are dissolved in seawater. Afterwards, that negatively charged elements may undergo electrical condensation around cationic centers of revolutions. That explain a unique mechanism which operates when negatively charged phosphate compounds and pentagonal blocks found in RNA and DNA as ribose as well as pentagonal rings in nitrogenous bases A and G are being winded. The compensative anionic flow and revolutions may conduct winding of hexagonal blocks found in nitrogenous bases A, G and C, T or U. These assume to gather more positive charge needed to bridge negatively charged sugar molecules in nucleic acids. Thus, the continuity in generation of electronegative compounds and spiral manner of arranging them within the sub-bubble vortices should be regarded as a mechanism responsible for precise, rotational-electric polymerization of elongated macromolecules of RNA/DNA architecture. Reported research refers mainly to physical processes activated by rising bubbles thus should be confronted with other experimental methods used in genetics, microbiology and chemistry.","PeriodicalId":7529,"journal":{"name":"AIMS Biophysics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bubble mediated polymerization of RNA and DNA\",\"authors\":\"R. Marks\",\"doi\":\"10.3934/biophy.2022009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research dedicated to trace rotational motion of bubbles in saline water revealed that these may generate either single cationic or cationic/anionic motions, including spliced double helix flow. In all cases, the aggregated ionic flows propagate in spiraling as well as rotational manner. However, if bi-ionic or double helix motion is generated, the flow is oppositely directed and has opposite electric charges. Next, the assembled flow is forced to pirouette within the bubble vortex. During that processing the narrowing of spiraling flow takes place and result in increase of revolutions to even millions per second. As a result, a significant friction is induced between revolving ionic hydrates allowing continuous detachment of electrons from covalent atomic shells of electropositive elements. Then, free electrons may be attracted by electronegative elements that are dissolved in seawater. Afterwards, that negatively charged elements may undergo electrical condensation around cationic centers of revolutions. That explain a unique mechanism which operates when negatively charged phosphate compounds and pentagonal blocks found in RNA and DNA as ribose as well as pentagonal rings in nitrogenous bases A and G are being winded. The compensative anionic flow and revolutions may conduct winding of hexagonal blocks found in nitrogenous bases A, G and C, T or U. These assume to gather more positive charge needed to bridge negatively charged sugar molecules in nucleic acids. Thus, the continuity in generation of electronegative compounds and spiral manner of arranging them within the sub-bubble vortices should be regarded as a mechanism responsible for precise, rotational-electric polymerization of elongated macromolecules of RNA/DNA architecture. Reported research refers mainly to physical processes activated by rising bubbles thus should be confronted with other experimental methods used in genetics, microbiology and chemistry.\",\"PeriodicalId\":7529,\"journal\":{\"name\":\"AIMS Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/biophy.2022009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/biophy.2022009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Research dedicated to trace rotational motion of bubbles in saline water revealed that these may generate either single cationic or cationic/anionic motions, including spliced double helix flow. In all cases, the aggregated ionic flows propagate in spiraling as well as rotational manner. However, if bi-ionic or double helix motion is generated, the flow is oppositely directed and has opposite electric charges. Next, the assembled flow is forced to pirouette within the bubble vortex. During that processing the narrowing of spiraling flow takes place and result in increase of revolutions to even millions per second. As a result, a significant friction is induced between revolving ionic hydrates allowing continuous detachment of electrons from covalent atomic shells of electropositive elements. Then, free electrons may be attracted by electronegative elements that are dissolved in seawater. Afterwards, that negatively charged elements may undergo electrical condensation around cationic centers of revolutions. That explain a unique mechanism which operates when negatively charged phosphate compounds and pentagonal blocks found in RNA and DNA as ribose as well as pentagonal rings in nitrogenous bases A and G are being winded. The compensative anionic flow and revolutions may conduct winding of hexagonal blocks found in nitrogenous bases A, G and C, T or U. These assume to gather more positive charge needed to bridge negatively charged sugar molecules in nucleic acids. Thus, the continuity in generation of electronegative compounds and spiral manner of arranging them within the sub-bubble vortices should be regarded as a mechanism responsible for precise, rotational-electric polymerization of elongated macromolecules of RNA/DNA architecture. Reported research refers mainly to physical processes activated by rising bubbles thus should be confronted with other experimental methods used in genetics, microbiology and chemistry.
期刊介绍:
AIMS Biophysics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of biophysics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Biophysics welcomes, but not limited to, the papers from the following topics: · Structural biology · Biophysical technology · Bioenergetics · Membrane biophysics · Cellular Biophysics · Electrophysiology · Neuro-Biophysics · Biomechanics · Systems biology