大减速比周圈传动系统及部件级设计程序

IF 1.4 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of the American Helicopter Society Pub Date : 2022-01-01 DOI:10.4050/jahs.67.032003
Tanmay D. Mathur, E. Smith, H. Desmidt, R. Bill
{"title":"大减速比周圈传动系统及部件级设计程序","authors":"Tanmay D. Mathur, E. Smith, H. Desmidt, R. Bill","doi":"10.4050/jahs.67.032003","DOIUrl":null,"url":null,"abstract":"The focus of this work is to integrate component-level design analyses developed for different machine elements of a twin pericyclic drive into a comprehensive design decisions framework. The integrated system loads, bearing loads, and tooth contact analysis procedure is used for designing a prototype for minimum weight within the constraints posed by assembly, component life, and system efficiency. Simultaneous sizing of the gears, bearings, and shafts was performed for given input power, speed, and reduction ratio. The effect of inertial loads due to nutational gear motion is significant on support bearing loads, and the gear bodies are designed to minimize these loads. It was demonstrated that a torque density greater than 50 Nm/kg can be achieved for a low Technology readiness level (TRL) pericyclic transmission prototype design. The test article is designed to operate at a 50-HP, 5000 RPM input with a speed reduction ratio of 32:1 and system efficiency greater than 93%.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System and Component Level Design Procedure for High Reduction Ratio Pericyclic Drive\",\"authors\":\"Tanmay D. Mathur, E. Smith, H. Desmidt, R. Bill\",\"doi\":\"10.4050/jahs.67.032003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this work is to integrate component-level design analyses developed for different machine elements of a twin pericyclic drive into a comprehensive design decisions framework. The integrated system loads, bearing loads, and tooth contact analysis procedure is used for designing a prototype for minimum weight within the constraints posed by assembly, component life, and system efficiency. Simultaneous sizing of the gears, bearings, and shafts was performed for given input power, speed, and reduction ratio. The effect of inertial loads due to nutational gear motion is significant on support bearing loads, and the gear bodies are designed to minimize these loads. It was demonstrated that a torque density greater than 50 Nm/kg can be achieved for a low Technology readiness level (TRL) pericyclic transmission prototype design. The test article is designed to operate at a 50-HP, 5000 RPM input with a speed reduction ratio of 32:1 and system efficiency greater than 93%.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.67.032003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.67.032003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的重点是将针对双周环驱动的不同机器元素开发的组件级设计分析集成到一个全面的设计决策框架中。集成的系统载荷、轴承载荷和齿接触分析程序用于在装配、组件寿命和系统效率的约束下设计最小重量的原型。同时尺寸的齿轮,轴承和轴进行给定的输入功率,速度和减速比。由齿轮运动引起的惯性载荷对支承轴承载荷的影响是显著的,齿轮体的设计是为了尽量减少这些载荷。结果表明,在低技术准备水平(TRL)下,可以实现大于50 Nm/kg的转矩密度。试验件设计在50马力,5000转/分输入下运行,减速比32:1,系统效率大于93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
System and Component Level Design Procedure for High Reduction Ratio Pericyclic Drive
The focus of this work is to integrate component-level design analyses developed for different machine elements of a twin pericyclic drive into a comprehensive design decisions framework. The integrated system loads, bearing loads, and tooth contact analysis procedure is used for designing a prototype for minimum weight within the constraints posed by assembly, component life, and system efficiency. Simultaneous sizing of the gears, bearings, and shafts was performed for given input power, speed, and reduction ratio. The effect of inertial loads due to nutational gear motion is significant on support bearing loads, and the gear bodies are designed to minimize these loads. It was demonstrated that a torque density greater than 50 Nm/kg can be achieved for a low Technology readiness level (TRL) pericyclic transmission prototype design. The test article is designed to operate at a 50-HP, 5000 RPM input with a speed reduction ratio of 32:1 and system efficiency greater than 93%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Helicopter Society
Journal of the American Helicopter Society 工程技术-工程:宇航
CiteScore
4.10
自引率
33.30%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online. The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine
期刊最新文献
Dynamic Load Analysis of Motion Converter Ball Bearings in a Pericyclic Transmission Analytical Model Development for Rotors Hovering Above Heaving Surfaces Deep Learning Based Obstacle Awareness from Airborne Optical Sensors Observers for Robust Rotor State Estimation Performance and Loads of a Wing-Offset Compound Helicopter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1