XV-15倾转旋翼机在转换机动过程中的相互作用空气动力学

IF 1.4 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of the American Helicopter Society Pub Date : 2022-01-01 DOI:10.4050/jahs.67.032005
S. Tran, Joon W. Lim
{"title":"XV-15倾转旋翼机在转换机动过程中的相互作用空气动力学","authors":"S. Tran, Joon W. Lim","doi":"10.4050/jahs.67.032005","DOIUrl":null,"url":null,"abstract":"The high-fidelity computational fluid dynamics (CFD) tool CREATE™-AV HELIOS is used to investigate the interactional aerodynamics of the XV-15 tiltrotor in this work. The full vehicle is studied in a quasi-static manner with various airspeeds, nacelle angles, and vehicle attitudes to simulate hover-to-forward flight transition. The rotor is trimmed using CFD/CSD coupling with CAMRAD II. Significant wing-on-rotor interactions are observed where the thickness and loading effects of the wing create an impulsive doublet loading on the rotor as it passes over the wings. Furthermore, the wing is shown to alter the blade–vortex interactions of the rotor at high nacelle angles. The rotor in turn noticeably alters the lift and drag characteristics of the wing. At moderate to low nacelle angles, the rotor downwash enhances the dynamic pressure primarily on the upper surface of the wing, increasing the total wing lift by up to 14%. The effect on the drag varies depending on the nacelle angle. At high nacelle angles, the rotor is shown to decrease both lift and drag of the wing by 15% and 20%, respectively. Overall, this work serves to illuminate and quantify some of the complex aerodynamic interactions that occur during the conversion maneuver of tiltrotor aircraft.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactional Aerodynamics of the XV-15 Tiltrotor Aircraft during Conversion Maneuvers\",\"authors\":\"S. Tran, Joon W. Lim\",\"doi\":\"10.4050/jahs.67.032005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high-fidelity computational fluid dynamics (CFD) tool CREATE™-AV HELIOS is used to investigate the interactional aerodynamics of the XV-15 tiltrotor in this work. The full vehicle is studied in a quasi-static manner with various airspeeds, nacelle angles, and vehicle attitudes to simulate hover-to-forward flight transition. The rotor is trimmed using CFD/CSD coupling with CAMRAD II. Significant wing-on-rotor interactions are observed where the thickness and loading effects of the wing create an impulsive doublet loading on the rotor as it passes over the wings. Furthermore, the wing is shown to alter the blade–vortex interactions of the rotor at high nacelle angles. The rotor in turn noticeably alters the lift and drag characteristics of the wing. At moderate to low nacelle angles, the rotor downwash enhances the dynamic pressure primarily on the upper surface of the wing, increasing the total wing lift by up to 14%. The effect on the drag varies depending on the nacelle angle. At high nacelle angles, the rotor is shown to decrease both lift and drag of the wing by 15% and 20%, respectively. Overall, this work serves to illuminate and quantify some of the complex aerodynamic interactions that occur during the conversion maneuver of tiltrotor aircraft.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.67.032005\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.67.032005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,使用高保真计算流体动力学(CFD)工具CREATE™-AV HELIOS来研究XV-15倾转旋翼的相互作用空气动力学。以准静态的方式对飞行器进行了研究,包括不同的空速、机舱角度和飞行器姿态,以模拟悬停到前飞的过渡。转子采用CFD/CSD耦合CAMRAD II进行修整。重要的翼对转子的相互作用被观察到,厚度和机翼的载荷效应,在转子上创造一个脉冲双重载荷,因为它通过翅膀。此外,在高机舱角时,机翼可以改变旋翼与叶片的相互作用。旋翼反过来明显地改变了机翼的升力和阻力特性。在中等到较低的短舱角度下,旋翼下洗提高了主要在机翼上表面的动压力,使机翼的总升力提高了14%。对阻力的影响取决于机舱的角度。在高机舱角度下,旋翼可以分别降低15%和20%的升力和阻力。总的来说,这项工作有助于阐明和量化在倾转旋翼飞机转换机动期间发生的一些复杂的空气动力学相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interactional Aerodynamics of the XV-15 Tiltrotor Aircraft during Conversion Maneuvers
The high-fidelity computational fluid dynamics (CFD) tool CREATE™-AV HELIOS is used to investigate the interactional aerodynamics of the XV-15 tiltrotor in this work. The full vehicle is studied in a quasi-static manner with various airspeeds, nacelle angles, and vehicle attitudes to simulate hover-to-forward flight transition. The rotor is trimmed using CFD/CSD coupling with CAMRAD II. Significant wing-on-rotor interactions are observed where the thickness and loading effects of the wing create an impulsive doublet loading on the rotor as it passes over the wings. Furthermore, the wing is shown to alter the blade–vortex interactions of the rotor at high nacelle angles. The rotor in turn noticeably alters the lift and drag characteristics of the wing. At moderate to low nacelle angles, the rotor downwash enhances the dynamic pressure primarily on the upper surface of the wing, increasing the total wing lift by up to 14%. The effect on the drag varies depending on the nacelle angle. At high nacelle angles, the rotor is shown to decrease both lift and drag of the wing by 15% and 20%, respectively. Overall, this work serves to illuminate and quantify some of the complex aerodynamic interactions that occur during the conversion maneuver of tiltrotor aircraft.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Helicopter Society
Journal of the American Helicopter Society 工程技术-工程:宇航
CiteScore
4.10
自引率
33.30%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online. The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine
期刊最新文献
Dynamic Load Analysis of Motion Converter Ball Bearings in a Pericyclic Transmission Analytical Model Development for Rotors Hovering Above Heaving Surfaces Deep Learning Based Obstacle Awareness from Airborne Optical Sensors Observers for Robust Rotor State Estimation Performance and Loads of a Wing-Offset Compound Helicopter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1