同轴复合直升机飞行控制设计与高速操纵品质评估

IF 1.4 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of the American Helicopter Society Pub Date : 2022-01-01 DOI:10.4050/jahs.67.032008
T. Berger, C. Blanken, Jeff A. Lusardi, M. Tischler, J. Horn
{"title":"同轴复合直升机飞行控制设计与高速操纵品质评估","authors":"T. Berger, C. Blanken, Jeff A. Lusardi, M. Tischler, J. Horn","doi":"10.4050/jahs.67.032008","DOIUrl":null,"url":null,"abstract":"To provide the government with independent control-system design, handling qualities analysis, and simulation research capabilities in support of Future Vertical Lift, the U.S. Army Combat Capabilities Development Command Aviation & Missile Center has developed generic high-fidelity flight-dynamics models of several advanced high-speed rotorcraft configurations. One of the configurations modeled is a lift offset coaxial-compound helicopter with a pusher propeller. Full flight envelope explicit model following control laws were designed for the generic coaxial-compound helicopter using a multiobjective optimization approach to meet a comprehensive set of stability, handling qualities, and performance specifications. Helicopter response types were used for hover/low-speed, while typical fixed-wing response types (normal acceleration and sideslip command) were used at high speed. The control laws were evaluated in a piloted simulation experiment at the NASA Ames Vertical Motion Simulator using a series of previously developed high-speed handling qualities demonstration maneuvers. This paper discusses the control laws and the results of the piloted handling qualities assessment, which showed assigned Level 1 handling qualities for six of the seven maneuvers evaluated.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coaxial-Compound Helicopter Flight Control Design and High-Speed Handling Qualities Assessment\",\"authors\":\"T. Berger, C. Blanken, Jeff A. Lusardi, M. Tischler, J. Horn\",\"doi\":\"10.4050/jahs.67.032008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To provide the government with independent control-system design, handling qualities analysis, and simulation research capabilities in support of Future Vertical Lift, the U.S. Army Combat Capabilities Development Command Aviation & Missile Center has developed generic high-fidelity flight-dynamics models of several advanced high-speed rotorcraft configurations. One of the configurations modeled is a lift offset coaxial-compound helicopter with a pusher propeller. Full flight envelope explicit model following control laws were designed for the generic coaxial-compound helicopter using a multiobjective optimization approach to meet a comprehensive set of stability, handling qualities, and performance specifications. Helicopter response types were used for hover/low-speed, while typical fixed-wing response types (normal acceleration and sideslip command) were used at high speed. The control laws were evaluated in a piloted simulation experiment at the NASA Ames Vertical Motion Simulator using a series of previously developed high-speed handling qualities demonstration maneuvers. This paper discusses the control laws and the results of the piloted handling qualities assessment, which showed assigned Level 1 handling qualities for six of the seven maneuvers evaluated.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.67.032008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.67.032008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 2

摘要

为了向政府提供独立的控制系统设计、操纵质量分析和模拟研究能力,以支持未来垂直升力,美国陆军作战能力发展司令部航空与导弹中心开发了几种先进高速旋翼机配置的通用高保真飞行动力学模型。其中一种构型是带推进螺旋桨的升力偏置同轴复合直升机。采用多目标优化方法,设计了通用同轴复合直升机控制律下的全飞行包线显式模型,以满足综合的稳定性、操纵品质和性能要求。直升机响应类型用于悬停/低速,而典型的固定翼响应类型(正常加速和侧滑命令)用于高速。在NASA艾姆斯垂直运动模拟器上,通过一系列先前开发的高速操纵质量演示演习,对控制规律进行了评估。本文讨论了控制规律和操纵质量评估的结果,在评估的7种机动中,有6种被指定为一级操纵质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coaxial-Compound Helicopter Flight Control Design and High-Speed Handling Qualities Assessment
To provide the government with independent control-system design, handling qualities analysis, and simulation research capabilities in support of Future Vertical Lift, the U.S. Army Combat Capabilities Development Command Aviation & Missile Center has developed generic high-fidelity flight-dynamics models of several advanced high-speed rotorcraft configurations. One of the configurations modeled is a lift offset coaxial-compound helicopter with a pusher propeller. Full flight envelope explicit model following control laws were designed for the generic coaxial-compound helicopter using a multiobjective optimization approach to meet a comprehensive set of stability, handling qualities, and performance specifications. Helicopter response types were used for hover/low-speed, while typical fixed-wing response types (normal acceleration and sideslip command) were used at high speed. The control laws were evaluated in a piloted simulation experiment at the NASA Ames Vertical Motion Simulator using a series of previously developed high-speed handling qualities demonstration maneuvers. This paper discusses the control laws and the results of the piloted handling qualities assessment, which showed assigned Level 1 handling qualities for six of the seven maneuvers evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Helicopter Society
Journal of the American Helicopter Society 工程技术-工程:宇航
CiteScore
4.10
自引率
33.30%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online. The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine
期刊最新文献
Dynamic Load Analysis of Motion Converter Ball Bearings in a Pericyclic Transmission Analytical Model Development for Rotors Hovering Above Heaving Surfaces Deep Learning Based Obstacle Awareness from Airborne Optical Sensors Observers for Robust Rotor State Estimation Performance and Loads of a Wing-Offset Compound Helicopter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1