{"title":"转矩平衡升力偏置同轴转子的推力分担变化","authors":"J. Ho, H. Yeo","doi":"10.4050/jahs.68.022008","DOIUrl":null,"url":null,"abstract":"This paper presents numerical calculations, on coaxial rotor systems, that show the variations of rotor thrust share with lift offset, system thrust, and advance ratio. The calculations are based on a coupled analysis between the U.S. Army's Rotorcraft Comprehensive Analysis System (RCAS) and a viscous vortex particle method. The level of agreement between calculations and experimental data is good in hover and mixed in edgewise flight. In hover and zero lift offset–a condition in which the upper rotor typically produces more thrust than the lower rotor–changing system thrust does not significantly alter the rotor thrust share. For advance ratios up to approximately 0.25, independently increasing lift offset increases the lower rotor thrust; this is an aeroelastic phenomenon that is eliminated with rigid blades. Independently increasing advance ratio leads to three distinct regions with different thrust sharing behaviors; these behaviors are governed by changes to the longitudinal skew of the upper rotor wake and its proximity to the lower rotor.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations in Thrust Sharing for Torque-Balanced Lift-Offset Coaxial Rotors\",\"authors\":\"J. Ho, H. Yeo\",\"doi\":\"10.4050/jahs.68.022008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents numerical calculations, on coaxial rotor systems, that show the variations of rotor thrust share with lift offset, system thrust, and advance ratio. The calculations are based on a coupled analysis between the U.S. Army's Rotorcraft Comprehensive Analysis System (RCAS) and a viscous vortex particle method. The level of agreement between calculations and experimental data is good in hover and mixed in edgewise flight. In hover and zero lift offset–a condition in which the upper rotor typically produces more thrust than the lower rotor–changing system thrust does not significantly alter the rotor thrust share. For advance ratios up to approximately 0.25, independently increasing lift offset increases the lower rotor thrust; this is an aeroelastic phenomenon that is eliminated with rigid blades. Independently increasing advance ratio leads to three distinct regions with different thrust sharing behaviors; these behaviors are governed by changes to the longitudinal skew of the upper rotor wake and its proximity to the lower rotor.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.68.022008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.68.022008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Variations in Thrust Sharing for Torque-Balanced Lift-Offset Coaxial Rotors
This paper presents numerical calculations, on coaxial rotor systems, that show the variations of rotor thrust share with lift offset, system thrust, and advance ratio. The calculations are based on a coupled analysis between the U.S. Army's Rotorcraft Comprehensive Analysis System (RCAS) and a viscous vortex particle method. The level of agreement between calculations and experimental data is good in hover and mixed in edgewise flight. In hover and zero lift offset–a condition in which the upper rotor typically produces more thrust than the lower rotor–changing system thrust does not significantly alter the rotor thrust share. For advance ratios up to approximately 0.25, independently increasing lift offset increases the lower rotor thrust; this is an aeroelastic phenomenon that is eliminated with rigid blades. Independently increasing advance ratio leads to three distinct regions with different thrust sharing behaviors; these behaviors are governed by changes to the longitudinal skew of the upper rotor wake and its proximity to the lower rotor.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine