M. McKay, Praneet Vayalali, F. Gandhi, T. Berger, Mark J. S. Lopez
{"title":"同轴推进直升机作动器故障控制分配重构","authors":"M. McKay, Praneet Vayalali, F. Gandhi, T. Berger, Mark J. S. Lopez","doi":"10.4050/jahs.68.032004","DOIUrl":null,"url":null,"abstract":"An elastic blade flight dynamics model for a coaxial helicopter platform based on the Sikorsky X2 Technology™ Demonstrator is presented and validated with steady trim and frequency response flight-test data. A full authority explicit model following control architecture along with pseudoinverse control allocation is implemented for the model in hover and cruise at 180 kt using CONDUIT® in order to stabilize the vehicle and meet a set of stability, handling qualities, and performance requirements. Different fault scenarios are considered including failure of rotor swashplate actuators and tail surface actuators in hover and forward flight, which are compensated for by recalculating the pseudoinverse control mixing accordingly. The approach is shown to maintain aircraft stability through the fault transient and into a new steady trim state for the vehicle. Though the implemented controller is successful in maintaining the aircraft state, different fault cases lead to violations in rotor tip clearance limits, which will require additional effort to account for in flight.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control Allocation Reconfiguration for Actuator Failure on a Coaxial-Pusher Helicopter\",\"authors\":\"M. McKay, Praneet Vayalali, F. Gandhi, T. Berger, Mark J. S. Lopez\",\"doi\":\"10.4050/jahs.68.032004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An elastic blade flight dynamics model for a coaxial helicopter platform based on the Sikorsky X2 Technology™ Demonstrator is presented and validated with steady trim and frequency response flight-test data. A full authority explicit model following control architecture along with pseudoinverse control allocation is implemented for the model in hover and cruise at 180 kt using CONDUIT® in order to stabilize the vehicle and meet a set of stability, handling qualities, and performance requirements. Different fault scenarios are considered including failure of rotor swashplate actuators and tail surface actuators in hover and forward flight, which are compensated for by recalculating the pseudoinverse control mixing accordingly. The approach is shown to maintain aircraft stability through the fault transient and into a new steady trim state for the vehicle. Though the implemented controller is successful in maintaining the aircraft state, different fault cases lead to violations in rotor tip clearance limits, which will require additional effort to account for in flight.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.68.032004\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.68.032004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Control Allocation Reconfiguration for Actuator Failure on a Coaxial-Pusher Helicopter
An elastic blade flight dynamics model for a coaxial helicopter platform based on the Sikorsky X2 Technology™ Demonstrator is presented and validated with steady trim and frequency response flight-test data. A full authority explicit model following control architecture along with pseudoinverse control allocation is implemented for the model in hover and cruise at 180 kt using CONDUIT® in order to stabilize the vehicle and meet a set of stability, handling qualities, and performance requirements. Different fault scenarios are considered including failure of rotor swashplate actuators and tail surface actuators in hover and forward flight, which are compensated for by recalculating the pseudoinverse control mixing accordingly. The approach is shown to maintain aircraft stability through the fault transient and into a new steady trim state for the vehicle. Though the implemented controller is successful in maintaining the aircraft state, different fault cases lead to violations in rotor tip clearance limits, which will require additional effort to account for in flight.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine