M. May, N. Schneider, B. Schaufelberger, Markus Jung, Jonas Pfaff, Anja Altes, T. Haase, S. Schopferer, M. Imbert, P. Matura, Martin Blacha
{"title":"无人机和旋翼飞行器之间的碰撞:电池组碰撞响应的建模","authors":"M. May, N. Schneider, B. Schaufelberger, Markus Jung, Jonas Pfaff, Anja Altes, T. Haase, S. Schopferer, M. Imbert, P. Matura, Martin Blacha","doi":"10.4050/jahs.69.012004","DOIUrl":null,"url":null,"abstract":"Drones operating in an urban environment pose a potential collision threat to rotorcraft. In this paper, the battery pack of the DJI MAVIC 2 ZOOM is analyzed since the battery is considered to be the greatest threat due to its high weight and stiffness. Following a pyramid-type building block approach, a high-fidelity model simulation was developed for LS-DYNA based on a wide range of experiments, ranging from quasi-static material tests to quasi-static component tests up to high-velocity impact experiments. The high-fidelity model allows the prediction of damage in potential collision scenarios between a high-speed rotorcraft and the battery pack of the drone. For the particular impact configuration analyzed within this paper, the drone battery does not cause catastrophic failure of the windshield of the rotorcraft.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"44 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collisions between Drones and Rotorcraft: Modeling of the Crash Response of Battery Packs\",\"authors\":\"M. May, N. Schneider, B. Schaufelberger, Markus Jung, Jonas Pfaff, Anja Altes, T. Haase, S. Schopferer, M. Imbert, P. Matura, Martin Blacha\",\"doi\":\"10.4050/jahs.69.012004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drones operating in an urban environment pose a potential collision threat to rotorcraft. In this paper, the battery pack of the DJI MAVIC 2 ZOOM is analyzed since the battery is considered to be the greatest threat due to its high weight and stiffness. Following a pyramid-type building block approach, a high-fidelity model simulation was developed for LS-DYNA based on a wide range of experiments, ranging from quasi-static material tests to quasi-static component tests up to high-velocity impact experiments. The high-fidelity model allows the prediction of damage in potential collision scenarios between a high-speed rotorcraft and the battery pack of the drone. For the particular impact configuration analyzed within this paper, the drone battery does not cause catastrophic failure of the windshield of the rotorcraft.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.69.012004\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.69.012004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Collisions between Drones and Rotorcraft: Modeling of the Crash Response of Battery Packs
Drones operating in an urban environment pose a potential collision threat to rotorcraft. In this paper, the battery pack of the DJI MAVIC 2 ZOOM is analyzed since the battery is considered to be the greatest threat due to its high weight and stiffness. Following a pyramid-type building block approach, a high-fidelity model simulation was developed for LS-DYNA based on a wide range of experiments, ranging from quasi-static material tests to quasi-static component tests up to high-velocity impact experiments. The high-fidelity model allows the prediction of damage in potential collision scenarios between a high-speed rotorcraft and the battery pack of the drone. For the particular impact configuration analyzed within this paper, the drone battery does not cause catastrophic failure of the windshield of the rotorcraft.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine