{"title":"加拿大在非核工业中应用放射性材料和小型反应堆所产生的放射性废物的管理及其对今后新应用的影响","authors":"George Xu, Nicholas Chan","doi":"10.3934/environsci.2021039","DOIUrl":null,"url":null,"abstract":"A large number of artificial-origin radionuclides from irradiation in small reactors and/or nuclear reactions in accelerators are currently used in non-nuclear industries such as education, oil and gas, consumer merchandise, research, and medicine. Radioactive wastes from the use of these radionuclides in non-nuclear industries include expired sealed radioactive sources, biological materials, radionuclide-containing chemicals, contaminated equipment, and very small quantities of used nuclear fuel. Although being less challenging and complex than nuclear energy production and research waste streams, these wastes are subject to the common nuclear regulations by the Canadian Nuclear Safety Commission, and are managed following domestic and international standards and guidelines made by the Canadian Standards Association, International Atomic Energy Agency, and International Organization for Standardization. Management practices used in the nuclear industry in Canada are commonly applied to the non-nuclear industry radioactive waste streams, such as waste handling, treatment, packaging, storage, transportation, clearance and exemptions, and disposal. The half-lives of radionuclides in non‑nuclear applications range from hours to thousands of years, and their activities in non-nuclear industrial applications can be as low as their clearance level or as high as the upper limits for intermediate level radioactive waste. Waste containing only short half-life radionuclides is placed in temporary storage to allow decay, and then is cleared and disposed of through non-radioactive waste routes. Non‑clearable waste materials are treated, consolidated, and managed along with radioactive waste generated from the nuclear industries at designated radioactive waste management sites.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Management of radioactive waste from application of radioactive materials and small reactors in non-nuclear industries in Canada and the implications for their new application in the future\",\"authors\":\"George Xu, Nicholas Chan\",\"doi\":\"10.3934/environsci.2021039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large number of artificial-origin radionuclides from irradiation in small reactors and/or nuclear reactions in accelerators are currently used in non-nuclear industries such as education, oil and gas, consumer merchandise, research, and medicine. Radioactive wastes from the use of these radionuclides in non-nuclear industries include expired sealed radioactive sources, biological materials, radionuclide-containing chemicals, contaminated equipment, and very small quantities of used nuclear fuel. Although being less challenging and complex than nuclear energy production and research waste streams, these wastes are subject to the common nuclear regulations by the Canadian Nuclear Safety Commission, and are managed following domestic and international standards and guidelines made by the Canadian Standards Association, International Atomic Energy Agency, and International Organization for Standardization. Management practices used in the nuclear industry in Canada are commonly applied to the non-nuclear industry radioactive waste streams, such as waste handling, treatment, packaging, storage, transportation, clearance and exemptions, and disposal. The half-lives of radionuclides in non‑nuclear applications range from hours to thousands of years, and their activities in non-nuclear industrial applications can be as low as their clearance level or as high as the upper limits for intermediate level radioactive waste. Waste containing only short half-life radionuclides is placed in temporary storage to allow decay, and then is cleared and disposed of through non-radioactive waste routes. Non‑clearable waste materials are treated, consolidated, and managed along with radioactive waste generated from the nuclear industries at designated radioactive waste management sites.\",\"PeriodicalId\":45143,\"journal\":{\"name\":\"AIMS Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/environsci.2021039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/environsci.2021039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Management of radioactive waste from application of radioactive materials and small reactors in non-nuclear industries in Canada and the implications for their new application in the future
A large number of artificial-origin radionuclides from irradiation in small reactors and/or nuclear reactions in accelerators are currently used in non-nuclear industries such as education, oil and gas, consumer merchandise, research, and medicine. Radioactive wastes from the use of these radionuclides in non-nuclear industries include expired sealed radioactive sources, biological materials, radionuclide-containing chemicals, contaminated equipment, and very small quantities of used nuclear fuel. Although being less challenging and complex than nuclear energy production and research waste streams, these wastes are subject to the common nuclear regulations by the Canadian Nuclear Safety Commission, and are managed following domestic and international standards and guidelines made by the Canadian Standards Association, International Atomic Energy Agency, and International Organization for Standardization. Management practices used in the nuclear industry in Canada are commonly applied to the non-nuclear industry radioactive waste streams, such as waste handling, treatment, packaging, storage, transportation, clearance and exemptions, and disposal. The half-lives of radionuclides in non‑nuclear applications range from hours to thousands of years, and their activities in non-nuclear industrial applications can be as low as their clearance level or as high as the upper limits for intermediate level radioactive waste. Waste containing only short half-life radionuclides is placed in temporary storage to allow decay, and then is cleared and disposed of through non-radioactive waste routes. Non‑clearable waste materials are treated, consolidated, and managed along with radioactive waste generated from the nuclear industries at designated radioactive waste management sites.