{"title":"石灰喷雾干燥吸附SO2的实验评价","authors":"L. Koech, H. Rutto, T. Seodigeng","doi":"10.3934/environsci.2023019","DOIUrl":null,"url":null,"abstract":"This paper presents the findings of an experimental investigation on the performance of a laboratory-scale spray dryer involving flue gas desulfurization. Using commercial hydrated lime as a sorbent, a systematic set of experiments were performed to evaluate SO2 absorption capacity of the spray dryer. The experimentation involved accurate measurement of the spray drying characteristics, such as temperature and SO2 concentration along the spray chamber, by varying the input and output variables. Tests were done to investigate the effects of spray characteristics, i.e., inlet gas phase temperature (120–180 ℃) and calcium-to-sulfur ratio (1–2.5), on SO2 removal efficiency. The performance of the spray dryer was further evaluated based on the degree of conversion of calcium (sorbent utilization) after SO2 absorption. Results indicated an increase in SO2 removal efficiency by increasing the stoichiometric ratio and decreasing the temperature. Absorption efficiency of SO2 beyond 90% was achieved at a stoichiometric ratio of 2.5. A high degree of conversion of calcium was realized at low stoichiometric ratios, with a maximum utilization of 94% obtained at a stoichiometric ratio of 1.5. The analysis of the final desulfurization product revealed the presence of sulfite with better conversion achieved at a stoichiometric molar ratio of 1.5. A significant amount of unreacted sorbent (63.43%) was observed at a stoichiometric ratio of 2, while samples collected at a stoichiometric ratio of 1.5 had the lowest concentration of unreacted Ca[OH]2 (41.23%).","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":"101 2 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental evaluation of lime spray drying for SO2 absorption\",\"authors\":\"L. Koech, H. Rutto, T. Seodigeng\",\"doi\":\"10.3934/environsci.2023019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the findings of an experimental investigation on the performance of a laboratory-scale spray dryer involving flue gas desulfurization. Using commercial hydrated lime as a sorbent, a systematic set of experiments were performed to evaluate SO2 absorption capacity of the spray dryer. The experimentation involved accurate measurement of the spray drying characteristics, such as temperature and SO2 concentration along the spray chamber, by varying the input and output variables. Tests were done to investigate the effects of spray characteristics, i.e., inlet gas phase temperature (120–180 ℃) and calcium-to-sulfur ratio (1–2.5), on SO2 removal efficiency. The performance of the spray dryer was further evaluated based on the degree of conversion of calcium (sorbent utilization) after SO2 absorption. Results indicated an increase in SO2 removal efficiency by increasing the stoichiometric ratio and decreasing the temperature. Absorption efficiency of SO2 beyond 90% was achieved at a stoichiometric ratio of 2.5. A high degree of conversion of calcium was realized at low stoichiometric ratios, with a maximum utilization of 94% obtained at a stoichiometric ratio of 1.5. The analysis of the final desulfurization product revealed the presence of sulfite with better conversion achieved at a stoichiometric molar ratio of 1.5. A significant amount of unreacted sorbent (63.43%) was observed at a stoichiometric ratio of 2, while samples collected at a stoichiometric ratio of 1.5 had the lowest concentration of unreacted Ca[OH]2 (41.23%).\",\"PeriodicalId\":45143,\"journal\":{\"name\":\"AIMS Environmental Science\",\"volume\":\"101 2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/environsci.2023019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/environsci.2023019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Experimental evaluation of lime spray drying for SO2 absorption
This paper presents the findings of an experimental investigation on the performance of a laboratory-scale spray dryer involving flue gas desulfurization. Using commercial hydrated lime as a sorbent, a systematic set of experiments were performed to evaluate SO2 absorption capacity of the spray dryer. The experimentation involved accurate measurement of the spray drying characteristics, such as temperature and SO2 concentration along the spray chamber, by varying the input and output variables. Tests were done to investigate the effects of spray characteristics, i.e., inlet gas phase temperature (120–180 ℃) and calcium-to-sulfur ratio (1–2.5), on SO2 removal efficiency. The performance of the spray dryer was further evaluated based on the degree of conversion of calcium (sorbent utilization) after SO2 absorption. Results indicated an increase in SO2 removal efficiency by increasing the stoichiometric ratio and decreasing the temperature. Absorption efficiency of SO2 beyond 90% was achieved at a stoichiometric ratio of 2.5. A high degree of conversion of calcium was realized at low stoichiometric ratios, with a maximum utilization of 94% obtained at a stoichiometric ratio of 1.5. The analysis of the final desulfurization product revealed the presence of sulfite with better conversion achieved at a stoichiometric molar ratio of 1.5. A significant amount of unreacted sorbent (63.43%) was observed at a stoichiometric ratio of 2, while samples collected at a stoichiometric ratio of 1.5 had the lowest concentration of unreacted Ca[OH]2 (41.23%).