利用探地雷达、电阻率层析成像测量和景观剖面进行景观测绘

IF 0.9 Q4 GEOSCIENCES, MULTIDISCIPLINARY AIMS Geosciences Pub Date : 2022-01-01 DOI:10.3934/geosci.2022012
V. Matasov, S. Bricheva, A. Bobachev, I. Mironenko, Anton V Fedin, V. Sysuev, Lyudmila A Zolotaya, Sergey B Roganov
{"title":"利用探地雷达、电阻率层析成像测量和景观剖面进行景观测绘","authors":"V. Matasov, S. Bricheva, A. Bobachev, I. Mironenko, Anton V Fedin, V. Sysuev, Lyudmila A Zolotaya, Sergey B Roganov","doi":"10.3934/geosci.2022012","DOIUrl":null,"url":null,"abstract":"This work aims to verify and correct the boundary between two landscapes—moraine and outwash plain—delineated earlier by the classical landscape approach. The initial interpretation of the boundary caused controversy due to the appearance of the thermokarst depression in the outwash landscape. The lithological structure is one of the main factors of landscape differentiation. The classical approach includes drilling to obtain the lithological and sedimentary data. However, the boreholes are usually shallow, while geophysical methods allow to look deeper into the subsurface and improve our knowledge about lithological structure and stratigraphy. In this study, we use ground-penetrating radar with a peak frequency of 250 and 50 MHz and detailed electrical resistivity tomography (with 1 m electrode spacing) in addition to the landscape mapping and drilling to correct the landscape boundary position. We conclude that it is primarily defined by the subsurface boundary between lithological complexes of clayish moraine deposits and sandy outwash deposits located at 7 m depth. Moving the boundary to the northeast by 70–100 m from the current position removes inconsistencies and clarifies the history of the area's formation in the Quaternary.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landscape mapping using ground-penetrating radar, electrical resistivity tomography survey and landscape profiling\",\"authors\":\"V. Matasov, S. Bricheva, A. Bobachev, I. Mironenko, Anton V Fedin, V. Sysuev, Lyudmila A Zolotaya, Sergey B Roganov\",\"doi\":\"10.3934/geosci.2022012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to verify and correct the boundary between two landscapes—moraine and outwash plain—delineated earlier by the classical landscape approach. The initial interpretation of the boundary caused controversy due to the appearance of the thermokarst depression in the outwash landscape. The lithological structure is one of the main factors of landscape differentiation. The classical approach includes drilling to obtain the lithological and sedimentary data. However, the boreholes are usually shallow, while geophysical methods allow to look deeper into the subsurface and improve our knowledge about lithological structure and stratigraphy. In this study, we use ground-penetrating radar with a peak frequency of 250 and 50 MHz and detailed electrical resistivity tomography (with 1 m electrode spacing) in addition to the landscape mapping and drilling to correct the landscape boundary position. We conclude that it is primarily defined by the subsurface boundary between lithological complexes of clayish moraine deposits and sandy outwash deposits located at 7 m depth. Moving the boundary to the northeast by 70–100 m from the current position removes inconsistencies and clarifies the history of the area's formation in the Quaternary.\",\"PeriodicalId\":43999,\"journal\":{\"name\":\"AIMS Geosciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/geosci.2022012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/geosci.2022012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是验证和纠正两个景观之间的边界-冰碛和冲积平原-早先划定的经典景观方法。由于外冲地貌中热岩溶坳陷的出现,对边界的初步解释引起了争议。岩性结构是景观分异的主要因素之一。经典的方法包括钻井来获取岩性和沉积数据。然而,钻孔通常很浅,而地球物理方法可以更深入地观察地下,并提高我们对岩性结构和地层学的认识。在本研究中,我们使用峰值频率为250和50 MHz的探地雷达和详细的电阻率层析成像(电极间距为1 m),以及景观测绘和钻孔来校正景观边界位置。我们认为,它主要是由位于7 m深度的泥质冰碛沉积物和砂质冲积沉积物的岩性复合体之间的地下边界所定义的。将边界从当前位置向东北移动70-100米,消除了不一致性,并澄清了该地区第四纪的形成历史。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Landscape mapping using ground-penetrating radar, electrical resistivity tomography survey and landscape profiling
This work aims to verify and correct the boundary between two landscapes—moraine and outwash plain—delineated earlier by the classical landscape approach. The initial interpretation of the boundary caused controversy due to the appearance of the thermokarst depression in the outwash landscape. The lithological structure is one of the main factors of landscape differentiation. The classical approach includes drilling to obtain the lithological and sedimentary data. However, the boreholes are usually shallow, while geophysical methods allow to look deeper into the subsurface and improve our knowledge about lithological structure and stratigraphy. In this study, we use ground-penetrating radar with a peak frequency of 250 and 50 MHz and detailed electrical resistivity tomography (with 1 m electrode spacing) in addition to the landscape mapping and drilling to correct the landscape boundary position. We conclude that it is primarily defined by the subsurface boundary between lithological complexes of clayish moraine deposits and sandy outwash deposits located at 7 m depth. Moving the boundary to the northeast by 70–100 m from the current position removes inconsistencies and clarifies the history of the area's formation in the Quaternary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Geosciences
AIMS Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
7.70%
发文量
31
审稿时长
8 weeks
期刊最新文献
Digital infrastructure strategies: the case of the province of Caserta Geotechnical characterization of index and deformation properties of Stockholm clays Optimistic expectations and life satisfaction as antecedents of emigration attitudes among Bulgarian Millennials and Zoomers Point cloud registration: a mini-review of current state, challenging issues and future directions Design basis for Arctic infrastructure facilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1