东南亚某特大城市高危职业人群PM2.5暴露时空评价

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI:10.4209/aaqr.220134
Jarl Tynan Collado, J. G. Abalos, Imee de los Reyes, M. Cruz, G. Leung, Katrina Abenojar, Carlos Rosauro Manalo, Bernell Go, Christine L. Chan, Charlotte Kendra Gotangco Gonzales, J. Simpas, E. Porio, J. Wong, S. Lung, M. Cambaliza
{"title":"东南亚某特大城市高危职业人群PM2.5暴露时空评价","authors":"Jarl Tynan Collado, J. G. Abalos, Imee de los Reyes, M. Cruz, G. Leung, Katrina Abenojar, Carlos Rosauro Manalo, Bernell Go, Christine L. Chan, Charlotte Kendra Gotangco Gonzales, J. Simpas, E. Porio, J. Wong, S. Lung, M. Cambaliza","doi":"10.4209/aaqr.220134","DOIUrl":null,"url":null,"abstract":"Drivers of open-air public utility jeepneys (PUJs) in the Philippines are regularly exposed to severe levels of fine particulate pollution (PM 2.5 ), making them the appropriate sub-population for investigating the health impacts of PM 2.5 on populations chronically exposed to these kinds of unique sources. Real-time PM 2.5 exposures of PUJ drivers for a high-traffic route in Metro Manila, Philippines were assessed using Academia Sinica-LUNG (AS_LUNG) portable sensing devices. From all 15-second measurements obtained, the mean concentration of PM 2.5 is 36.4 µ g m –3 , seven times greater than the mean annual guideline value (5.0 µ g m –3 ) set by the World Health Organization (WHO). Elevated levels of PM 2.5 were observed at key transportation microenvironments (TMEs) such as a transport terminal and near a shopping mall. The occurrence of hotspots along the route is mainly attributed to traffic-promoting factors like stoplights and traffic rush hours. Multiple linear regression (MLR) analysis revealed that the area by the shopping mall had the highest contribution ( β = 52 µ g m –3 ) to PUJ driver exposure. To the best of our knowledge, this study is the first in the country to perform a detailed characterization of the exposure of a high-risk occupational group to PM 2.5 . These results reveal information that is normally undetected by fixed site monitoring (FSM), underscoring the importance of mobile measurements as a complement to FSM in assessing the exposure of urban populations to air pollution more extensively. Furthermore, this study demonstrates the heavy influence of traffic-promoting factors on air pollution, and the feasibility of high-resolution mobile sensing for quantifying pollution characteristics in rapidly developing nations with unique air pollution sources. Gaps in our knowledge of their health impacts may be closed through quantifying exposure using reliable sensing devices and methods presented in this work.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spatiotemporal Assessment of PM2.5 Exposure of a High-risk Occupational Group in a Southeast Asian Megacity\",\"authors\":\"Jarl Tynan Collado, J. G. Abalos, Imee de los Reyes, M. Cruz, G. Leung, Katrina Abenojar, Carlos Rosauro Manalo, Bernell Go, Christine L. Chan, Charlotte Kendra Gotangco Gonzales, J. Simpas, E. Porio, J. Wong, S. Lung, M. Cambaliza\",\"doi\":\"10.4209/aaqr.220134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drivers of open-air public utility jeepneys (PUJs) in the Philippines are regularly exposed to severe levels of fine particulate pollution (PM 2.5 ), making them the appropriate sub-population for investigating the health impacts of PM 2.5 on populations chronically exposed to these kinds of unique sources. Real-time PM 2.5 exposures of PUJ drivers for a high-traffic route in Metro Manila, Philippines were assessed using Academia Sinica-LUNG (AS_LUNG) portable sensing devices. From all 15-second measurements obtained, the mean concentration of PM 2.5 is 36.4 µ g m –3 , seven times greater than the mean annual guideline value (5.0 µ g m –3 ) set by the World Health Organization (WHO). Elevated levels of PM 2.5 were observed at key transportation microenvironments (TMEs) such as a transport terminal and near a shopping mall. The occurrence of hotspots along the route is mainly attributed to traffic-promoting factors like stoplights and traffic rush hours. Multiple linear regression (MLR) analysis revealed that the area by the shopping mall had the highest contribution ( β = 52 µ g m –3 ) to PUJ driver exposure. To the best of our knowledge, this study is the first in the country to perform a detailed characterization of the exposure of a high-risk occupational group to PM 2.5 . These results reveal information that is normally undetected by fixed site monitoring (FSM), underscoring the importance of mobile measurements as a complement to FSM in assessing the exposure of urban populations to air pollution more extensively. Furthermore, this study demonstrates the heavy influence of traffic-promoting factors on air pollution, and the feasibility of high-resolution mobile sensing for quantifying pollution characteristics in rapidly developing nations with unique air pollution sources. Gaps in our knowledge of their health impacts may be closed through quantifying exposure using reliable sensing devices and methods presented in this work.\",\"PeriodicalId\":7402,\"journal\":{\"name\":\"Aerosol and Air Quality Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol and Air Quality Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.4209/aaqr.220134\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.220134","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatiotemporal Assessment of PM2.5 Exposure of a High-risk Occupational Group in a Southeast Asian Megacity
Drivers of open-air public utility jeepneys (PUJs) in the Philippines are regularly exposed to severe levels of fine particulate pollution (PM 2.5 ), making them the appropriate sub-population for investigating the health impacts of PM 2.5 on populations chronically exposed to these kinds of unique sources. Real-time PM 2.5 exposures of PUJ drivers for a high-traffic route in Metro Manila, Philippines were assessed using Academia Sinica-LUNG (AS_LUNG) portable sensing devices. From all 15-second measurements obtained, the mean concentration of PM 2.5 is 36.4 µ g m –3 , seven times greater than the mean annual guideline value (5.0 µ g m –3 ) set by the World Health Organization (WHO). Elevated levels of PM 2.5 were observed at key transportation microenvironments (TMEs) such as a transport terminal and near a shopping mall. The occurrence of hotspots along the route is mainly attributed to traffic-promoting factors like stoplights and traffic rush hours. Multiple linear regression (MLR) analysis revealed that the area by the shopping mall had the highest contribution ( β = 52 µ g m –3 ) to PUJ driver exposure. To the best of our knowledge, this study is the first in the country to perform a detailed characterization of the exposure of a high-risk occupational group to PM 2.5 . These results reveal information that is normally undetected by fixed site monitoring (FSM), underscoring the importance of mobile measurements as a complement to FSM in assessing the exposure of urban populations to air pollution more extensively. Furthermore, this study demonstrates the heavy influence of traffic-promoting factors on air pollution, and the feasibility of high-resolution mobile sensing for quantifying pollution characteristics in rapidly developing nations with unique air pollution sources. Gaps in our knowledge of their health impacts may be closed through quantifying exposure using reliable sensing devices and methods presented in this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerosol and Air Quality Research
Aerosol and Air Quality Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
10.00%
发文量
163
审稿时长
3 months
期刊介绍: The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including: - Aerosol, air quality, atmospheric chemistry and global change; - Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure; - Nanoparticle and nanotechnology; - Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis; - Effects on the environments; - Air quality and human health; - Bioaerosols; - Indoor air quality; - Energy and air pollution; - Pollution control technologies; - Invention and improvement of sampling instruments and technologies; - Optical/radiative properties and remote sensing; - Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission; - Other topics related to aerosol and air quality.
期刊最新文献
Ambient PM2.5 temporal variation and source apportionment in Mbarara, Uganda. Real-World Effectiveness of Portable Air Cleaners in Reducing Home Particulate Matter Concentrations. Effect of Future Climate Change on Stratosphere-to-Troposphere-Exchange Driven Ozone in the Northern Hemisphere. Effects of E-Cigarette Liquid Ratios on the Gravimetric Filter Correction Factors and Real-Time Measurements. Composition Analysis of Airborne Microbiota in Outdoor and Indoor Based on Dust Separated by Micro-sized and Nano-sized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1