不同含水量植被的射频损耗模型

S. Peden, Ronald C. Bradbury, D. Lamb, M. Hedley
{"title":"不同含水量植被的射频损耗模型","authors":"S. Peden, Ronald C. Bradbury, D. Lamb, M. Hedley","doi":"10.4236/JEMAA.2021.133003","DOIUrl":null,"url":null,"abstract":"Assessing plant water status is important for monitoring plant physiology. Radio signals are attenuated when passing through vegetation. Both analytical and empirical models developed for radio frequency (RF) loss through vegetation have been dependent on experimental measurements and those measurements have been completed in specific situations. However, for models to be more broadly applicable across a broad range of vegetation types and constructs, basic electrical properties of the vegetation need to be characterised. Radio waves are affected especially by water and the relationship between water content in vegetation expressed as effective water path (EWP) in mm and measured RF loss (dB) at 2.4 GHz was investigated in this work. The EWP of eucalyptus leaves of varying amounts of leaf moisture (0% - 41.5%) ranged from 0 - 14 mm, respectively. When the model was compared with the actual RF loss there was a systematic offset equivalent to a residual leaf moisture content of 6.5% that was unaccounted for in the leaf moisture content determination (oven drying). This was attributed to bound water. When the model was adjusted for this amount of additional leaf water, the average RMSE in predicted RF loss was ±2.2 dB and was found to explain 89% of the variance in measured RF loss.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Model for RF Loss through Vegetation with Varying Water Content\",\"authors\":\"S. Peden, Ronald C. Bradbury, D. Lamb, M. Hedley\",\"doi\":\"10.4236/JEMAA.2021.133003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessing plant water status is important for monitoring plant physiology. Radio signals are attenuated when passing through vegetation. Both analytical and empirical models developed for radio frequency (RF) loss through vegetation have been dependent on experimental measurements and those measurements have been completed in specific situations. However, for models to be more broadly applicable across a broad range of vegetation types and constructs, basic electrical properties of the vegetation need to be characterised. Radio waves are affected especially by water and the relationship between water content in vegetation expressed as effective water path (EWP) in mm and measured RF loss (dB) at 2.4 GHz was investigated in this work. The EWP of eucalyptus leaves of varying amounts of leaf moisture (0% - 41.5%) ranged from 0 - 14 mm, respectively. When the model was compared with the actual RF loss there was a systematic offset equivalent to a residual leaf moisture content of 6.5% that was unaccounted for in the leaf moisture content determination (oven drying). This was attributed to bound water. When the model was adjusted for this amount of additional leaf water, the average RMSE in predicted RF loss was ±2.2 dB and was found to explain 89% of the variance in measured RF loss.\",\"PeriodicalId\":58231,\"journal\":{\"name\":\"电磁分析与应用期刊(英文)\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电磁分析与应用期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JEMAA.2021.133003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电磁分析与应用期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JEMAA.2021.133003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

植物水分状况评估对植物生理监测具有重要意义。无线电信号在穿过植被时会衰减。为植被造成的无线电频率损失制定的分析和经验模型都依赖于实验测量,这些测量是在特定情况下完成的。然而,为了使模型更广泛地适用于广泛的植被类型和结构,需要对植被的基本电学特性进行表征。无线电波特别受水分的影响,本文研究了植被含水量(以mm表示的有效水径(EWP))与2.4 GHz测量的射频损耗(dB)之间的关系。不同水分含量(0% ~ 41.5%)桉叶的EWP值分别为0 ~ 14 mm。当模型与实际RF损失进行比较时,在叶片水分含量测定(烘箱干燥)中没有考虑到相当于残余叶片水分含量6.5%的系统偏移。这归因于结合水。当模型根据这一额外的叶片水分进行调整时,预测射频损耗的平均RMSE为±2.2 dB,并且发现可以解释89%的测量射频损耗方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Model for RF Loss through Vegetation with Varying Water Content
Assessing plant water status is important for monitoring plant physiology. Radio signals are attenuated when passing through vegetation. Both analytical and empirical models developed for radio frequency (RF) loss through vegetation have been dependent on experimental measurements and those measurements have been completed in specific situations. However, for models to be more broadly applicable across a broad range of vegetation types and constructs, basic electrical properties of the vegetation need to be characterised. Radio waves are affected especially by water and the relationship between water content in vegetation expressed as effective water path (EWP) in mm and measured RF loss (dB) at 2.4 GHz was investigated in this work. The EWP of eucalyptus leaves of varying amounts of leaf moisture (0% - 41.5%) ranged from 0 - 14 mm, respectively. When the model was compared with the actual RF loss there was a systematic offset equivalent to a residual leaf moisture content of 6.5% that was unaccounted for in the leaf moisture content determination (oven drying). This was attributed to bound water. When the model was adjusted for this amount of additional leaf water, the average RMSE in predicted RF loss was ±2.2 dB and was found to explain 89% of the variance in measured RF loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
441
期刊最新文献
Determination of the Base Optimum Thickness of Back Illuminated (n+/p/p+) Bifacial Silicon Solar Cell, by Help of Diffusion Coefficient at Resonance Frequency Radio Frequency Quadrupole for Bunching Electron Beam: Electromagnetic Field, Particle Velocity Range, and Accuracy at 10 GHz Generation of Higher Terahertz Harmonics in Nonlinear Paraelectrics under Focusing in a Wide Temperature Range Proper Understanding of the Natures of Electrons, Protons, and Modifying Redundancies in Electro-Magnetism Hints of the Photonic Nature of the Electromagnetic Fields in Classical Electrodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1