棕碳气溶胶的浓度、辐射强迫及其对气候的影响研究进展

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI:10.4209/aaqr.220336
Shuai Li, Hua Zhang, Zhili Wang, Yonghang Chen
{"title":"棕碳气溶胶的浓度、辐射强迫及其对气候的影响研究进展","authors":"Shuai Li, Hua Zhang, Zhili Wang, Yonghang Chen","doi":"10.4209/aaqr.220336","DOIUrl":null,"url":null,"abstract":"Brown carbon (BrC) are important light-absorbing carbonaceous aerosols in the atmosphere, and it is of great significance to study the climate effects of BrC for regional or global climate change. This paper reviews recent advances in research on the radiative forcing of BrC, its effects on temperature and precipitation, and snow/ice albedo. Recent research suggests that: (1) Climate effects of aerosols can be represented more accurately when including BrC absorption in climate models; the regions with the highest global mean surface BrC concentrations estimated by models are mostly Southeast Asia and South America (biomass burning), East Asia and northeast India (biofuel burning), and Europe and North America (secondary sources); estimates of BrC radiative forcing are quite erratic, with a range of around 0.03–0.57 W m –2 . (2) BrC heating lead to tropical expansion and a reduction in deep convective mass fluxes in the upper troposphere; cloud fraction and cloud type have a substantial impact on the heating rate estimates of BrC. The inclusion of BrC in the model results in a clear shift in the cloud fraction, liquid water path, precipitation, and surface flux. BrC heating decreases precipitation on a global scale, particularly in tropical regions with high convective and precipitation intensity, but different in some regions. (3) Uncertain optical properties of BrC, mixing ratio of radiation-absorbing aerosols in snow, snow grain size and snow coverage lead to higher uncertainties and lower confidence in the simulated distribution and radiative forcing of BrC in snow than BC. To reduce the uncertainty of its climate effects, future research should focus on improving model research, creating reliable BrC emission inventories, and taking into account the photobleaching and lense effects of BrC.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in the Research on Brown Carbon Aerosols: Its Concentrations, Radiative Forcing, and Effects on Climate\",\"authors\":\"Shuai Li, Hua Zhang, Zhili Wang, Yonghang Chen\",\"doi\":\"10.4209/aaqr.220336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brown carbon (BrC) are important light-absorbing carbonaceous aerosols in the atmosphere, and it is of great significance to study the climate effects of BrC for regional or global climate change. This paper reviews recent advances in research on the radiative forcing of BrC, its effects on temperature and precipitation, and snow/ice albedo. Recent research suggests that: (1) Climate effects of aerosols can be represented more accurately when including BrC absorption in climate models; the regions with the highest global mean surface BrC concentrations estimated by models are mostly Southeast Asia and South America (biomass burning), East Asia and northeast India (biofuel burning), and Europe and North America (secondary sources); estimates of BrC radiative forcing are quite erratic, with a range of around 0.03–0.57 W m –2 . (2) BrC heating lead to tropical expansion and a reduction in deep convective mass fluxes in the upper troposphere; cloud fraction and cloud type have a substantial impact on the heating rate estimates of BrC. The inclusion of BrC in the model results in a clear shift in the cloud fraction, liquid water path, precipitation, and surface flux. BrC heating decreases precipitation on a global scale, particularly in tropical regions with high convective and precipitation intensity, but different in some regions. (3) Uncertain optical properties of BrC, mixing ratio of radiation-absorbing aerosols in snow, snow grain size and snow coverage lead to higher uncertainties and lower confidence in the simulated distribution and radiative forcing of BrC in snow than BC. To reduce the uncertainty of its climate effects, future research should focus on improving model research, creating reliable BrC emission inventories, and taking into account the photobleaching and lense effects of BrC.\",\"PeriodicalId\":7402,\"journal\":{\"name\":\"Aerosol and Air Quality Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol and Air Quality Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.4209/aaqr.220336\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.220336","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in the Research on Brown Carbon Aerosols: Its Concentrations, Radiative Forcing, and Effects on Climate
Brown carbon (BrC) are important light-absorbing carbonaceous aerosols in the atmosphere, and it is of great significance to study the climate effects of BrC for regional or global climate change. This paper reviews recent advances in research on the radiative forcing of BrC, its effects on temperature and precipitation, and snow/ice albedo. Recent research suggests that: (1) Climate effects of aerosols can be represented more accurately when including BrC absorption in climate models; the regions with the highest global mean surface BrC concentrations estimated by models are mostly Southeast Asia and South America (biomass burning), East Asia and northeast India (biofuel burning), and Europe and North America (secondary sources); estimates of BrC radiative forcing are quite erratic, with a range of around 0.03–0.57 W m –2 . (2) BrC heating lead to tropical expansion and a reduction in deep convective mass fluxes in the upper troposphere; cloud fraction and cloud type have a substantial impact on the heating rate estimates of BrC. The inclusion of BrC in the model results in a clear shift in the cloud fraction, liquid water path, precipitation, and surface flux. BrC heating decreases precipitation on a global scale, particularly in tropical regions with high convective and precipitation intensity, but different in some regions. (3) Uncertain optical properties of BrC, mixing ratio of radiation-absorbing aerosols in snow, snow grain size and snow coverage lead to higher uncertainties and lower confidence in the simulated distribution and radiative forcing of BrC in snow than BC. To reduce the uncertainty of its climate effects, future research should focus on improving model research, creating reliable BrC emission inventories, and taking into account the photobleaching and lense effects of BrC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerosol and Air Quality Research
Aerosol and Air Quality Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
10.00%
发文量
163
审稿时长
3 months
期刊介绍: The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including: - Aerosol, air quality, atmospheric chemistry and global change; - Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure; - Nanoparticle and nanotechnology; - Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis; - Effects on the environments; - Air quality and human health; - Bioaerosols; - Indoor air quality; - Energy and air pollution; - Pollution control technologies; - Invention and improvement of sampling instruments and technologies; - Optical/radiative properties and remote sensing; - Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission; - Other topics related to aerosol and air quality.
期刊最新文献
Ambient PM2.5 temporal variation and source apportionment in Mbarara, Uganda. Real-World Effectiveness of Portable Air Cleaners in Reducing Home Particulate Matter Concentrations. Effect of Future Climate Change on Stratosphere-to-Troposphere-Exchange Driven Ozone in the Northern Hemisphere. Effects of E-Cigarette Liquid Ratios on the Gravimetric Filter Correction Factors and Real-Time Measurements. Composition Analysis of Airborne Microbiota in Outdoor and Indoor Based on Dust Separated by Micro-sized and Nano-sized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1