J. Pariyothon, S. Bualert, Parkpoom Choomanee, T. Rungratanaubon, T. Thongyen, Narita Fakkaew, Chayaporn Phuetfoo, Jitlada Phupijit, W. Szymanski
{"title":"泰国四个选定地点亚微米大气气溶胶吸湿性生长因子","authors":"J. Pariyothon, S. Bualert, Parkpoom Choomanee, T. Rungratanaubon, T. Thongyen, Narita Fakkaew, Chayaporn Phuetfoo, Jitlada Phupijit, W. Szymanski","doi":"10.4209/aaqr.220374","DOIUrl":null,"url":null,"abstract":"Hygroscopic growth factor (Gf) of aerosols is related to water loading on particles in sub-saturated conditions. It is an essential parameter for assessing the role of atmospheric particles in the radiative transfer and cloud formation process. Therefore, the temporal variation in Gf of size-selected atmospheric particles from the Aitken mode (D p ≤ 100 nm) and accumulation mode (D p > 100 nm) was measured using a humidified tandem differential mobility analyser (H-TDMA) and the relationship between particle size and Gf for various locations and meteorological conditions was determined. The origin of ambient particles primarily defines their properties and governs their participation in atmospheric processes. Thus, the measurements were performed in locations with different land-use types: urban, rural, coastal-industrial, and landlocked industrial areas. The data showed site-dependent patterns of temporal and spatial changes in Gf. The results indicated that the number-weighted Gf averaged over the investigated particle size range (30–250 nm) was highest in rural areas (Gf = 1.27), followed by coastal-industrial (Gf = 1.19), urban (Gf = 1.11), and landlocked industrial areas (Gf = 1.06). Particles in the urban and landlocked industrial areas had relatively low Gf values, suggesting that they originated mainly from fossil fuel combustion, in contrast to particles at other sites which can be attributed to coastal proximity","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hygroscopic Growth Factors of Sub-micrometer Atmospheric Aerosols at Four Selected Sites in Thailand\",\"authors\":\"J. Pariyothon, S. Bualert, Parkpoom Choomanee, T. Rungratanaubon, T. Thongyen, Narita Fakkaew, Chayaporn Phuetfoo, Jitlada Phupijit, W. Szymanski\",\"doi\":\"10.4209/aaqr.220374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hygroscopic growth factor (Gf) of aerosols is related to water loading on particles in sub-saturated conditions. It is an essential parameter for assessing the role of atmospheric particles in the radiative transfer and cloud formation process. Therefore, the temporal variation in Gf of size-selected atmospheric particles from the Aitken mode (D p ≤ 100 nm) and accumulation mode (D p > 100 nm) was measured using a humidified tandem differential mobility analyser (H-TDMA) and the relationship between particle size and Gf for various locations and meteorological conditions was determined. The origin of ambient particles primarily defines their properties and governs their participation in atmospheric processes. Thus, the measurements were performed in locations with different land-use types: urban, rural, coastal-industrial, and landlocked industrial areas. The data showed site-dependent patterns of temporal and spatial changes in Gf. The results indicated that the number-weighted Gf averaged over the investigated particle size range (30–250 nm) was highest in rural areas (Gf = 1.27), followed by coastal-industrial (Gf = 1.19), urban (Gf = 1.11), and landlocked industrial areas (Gf = 1.06). Particles in the urban and landlocked industrial areas had relatively low Gf values, suggesting that they originated mainly from fossil fuel combustion, in contrast to particles at other sites which can be attributed to coastal proximity\",\"PeriodicalId\":7402,\"journal\":{\"name\":\"Aerosol and Air Quality Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol and Air Quality Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.4209/aaqr.220374\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.220374","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Hygroscopic Growth Factors of Sub-micrometer Atmospheric Aerosols at Four Selected Sites in Thailand
Hygroscopic growth factor (Gf) of aerosols is related to water loading on particles in sub-saturated conditions. It is an essential parameter for assessing the role of atmospheric particles in the radiative transfer and cloud formation process. Therefore, the temporal variation in Gf of size-selected atmospheric particles from the Aitken mode (D p ≤ 100 nm) and accumulation mode (D p > 100 nm) was measured using a humidified tandem differential mobility analyser (H-TDMA) and the relationship between particle size and Gf for various locations and meteorological conditions was determined. The origin of ambient particles primarily defines their properties and governs their participation in atmospheric processes. Thus, the measurements were performed in locations with different land-use types: urban, rural, coastal-industrial, and landlocked industrial areas. The data showed site-dependent patterns of temporal and spatial changes in Gf. The results indicated that the number-weighted Gf averaged over the investigated particle size range (30–250 nm) was highest in rural areas (Gf = 1.27), followed by coastal-industrial (Gf = 1.19), urban (Gf = 1.11), and landlocked industrial areas (Gf = 1.06). Particles in the urban and landlocked industrial areas had relatively low Gf values, suggesting that they originated mainly from fossil fuel combustion, in contrast to particles at other sites which can be attributed to coastal proximity
期刊介绍:
The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including:
- Aerosol, air quality, atmospheric chemistry and global change;
- Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure;
- Nanoparticle and nanotechnology;
- Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis;
- Effects on the environments;
- Air quality and human health;
- Bioaerosols;
- Indoor air quality;
- Energy and air pollution;
- Pollution control technologies;
- Invention and improvement of sampling instruments and technologies;
- Optical/radiative properties and remote sensing;
- Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission;
- Other topics related to aerosol and air quality.