{"title":"某冶炼厂挥发性有机化合物排放及过氧化氢氧化法去除戊二醛的评价","authors":"W. Cheng, Chun-Hung Lin, C. Yuan, K.L. Chang","doi":"10.4209/aaqr.220440","DOIUrl":null,"url":null,"abstract":"Rendering plants treat dead livestock and produce grease and bone meal. In a rendering plant, the cooking and drying processes are the main sources of odor emissions. Non-fresh dead livestock reduce the performance of odor control devices, and in Taiwan, the treatment facilities in a rendering plant mostly are operated in a batch feeding, which causes volatile organic compound (VOC) emissions in the exhausted gas, that always caused complaints from the nearby neighborhood. This study used respectively ozone and hydrogen peroxide to evaluate the removal efficiencies of pentanal, hexanal and toluene those are common VOCs in the rendering exhaustion. Experimental results indicated that ozone could not effectively reduce aldehydes and toluene, and the residual ozone remaining in the exhaust gas is a secondary air pollutant and irritate the human respiratory tracts. Oppositely, hydrogen peroxide effectively removed pentanal as a feasible VOC treatment oxidant by adding into a contact reactor. When the pentanal exhaustion concentration from the rendering process was around 36.23 ppm in the flue with the flow rates from 100 to 250 Nm 3 min –1 , the reaction rate constant of pentanal for the first-order reaction by aqueous hydrogen peroxide of 1,000 mg L –1 was obtained as 0.536 1 s –1 , and then the pentanal reduced to 0.68 to 2 ppm. Based on the simulation using the Gaussian dispersion model, the concentration ranges of pentanal in the exhausted stream resulted in the pentanal emission rate lower than 0.01 g s –1 , which no longer causes surrounding residents’ complaints.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VOC Emissions from a Rendering Plant and Evaluation for Removal of Pentanal by Oxidization Using Hydrogen Peroxide\",\"authors\":\"W. Cheng, Chun-Hung Lin, C. Yuan, K.L. Chang\",\"doi\":\"10.4209/aaqr.220440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rendering plants treat dead livestock and produce grease and bone meal. In a rendering plant, the cooking and drying processes are the main sources of odor emissions. Non-fresh dead livestock reduce the performance of odor control devices, and in Taiwan, the treatment facilities in a rendering plant mostly are operated in a batch feeding, which causes volatile organic compound (VOC) emissions in the exhausted gas, that always caused complaints from the nearby neighborhood. This study used respectively ozone and hydrogen peroxide to evaluate the removal efficiencies of pentanal, hexanal and toluene those are common VOCs in the rendering exhaustion. Experimental results indicated that ozone could not effectively reduce aldehydes and toluene, and the residual ozone remaining in the exhaust gas is a secondary air pollutant and irritate the human respiratory tracts. Oppositely, hydrogen peroxide effectively removed pentanal as a feasible VOC treatment oxidant by adding into a contact reactor. When the pentanal exhaustion concentration from the rendering process was around 36.23 ppm in the flue with the flow rates from 100 to 250 Nm 3 min –1 , the reaction rate constant of pentanal for the first-order reaction by aqueous hydrogen peroxide of 1,000 mg L –1 was obtained as 0.536 1 s –1 , and then the pentanal reduced to 0.68 to 2 ppm. Based on the simulation using the Gaussian dispersion model, the concentration ranges of pentanal in the exhausted stream resulted in the pentanal emission rate lower than 0.01 g s –1 , which no longer causes surrounding residents’ complaints.\",\"PeriodicalId\":7402,\"journal\":{\"name\":\"Aerosol and Air Quality Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol and Air Quality Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.4209/aaqr.220440\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.220440","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
VOC Emissions from a Rendering Plant and Evaluation for Removal of Pentanal by Oxidization Using Hydrogen Peroxide
Rendering plants treat dead livestock and produce grease and bone meal. In a rendering plant, the cooking and drying processes are the main sources of odor emissions. Non-fresh dead livestock reduce the performance of odor control devices, and in Taiwan, the treatment facilities in a rendering plant mostly are operated in a batch feeding, which causes volatile organic compound (VOC) emissions in the exhausted gas, that always caused complaints from the nearby neighborhood. This study used respectively ozone and hydrogen peroxide to evaluate the removal efficiencies of pentanal, hexanal and toluene those are common VOCs in the rendering exhaustion. Experimental results indicated that ozone could not effectively reduce aldehydes and toluene, and the residual ozone remaining in the exhaust gas is a secondary air pollutant and irritate the human respiratory tracts. Oppositely, hydrogen peroxide effectively removed pentanal as a feasible VOC treatment oxidant by adding into a contact reactor. When the pentanal exhaustion concentration from the rendering process was around 36.23 ppm in the flue with the flow rates from 100 to 250 Nm 3 min –1 , the reaction rate constant of pentanal for the first-order reaction by aqueous hydrogen peroxide of 1,000 mg L –1 was obtained as 0.536 1 s –1 , and then the pentanal reduced to 0.68 to 2 ppm. Based on the simulation using the Gaussian dispersion model, the concentration ranges of pentanal in the exhausted stream resulted in the pentanal emission rate lower than 0.01 g s –1 , which no longer causes surrounding residents’ complaints.
期刊介绍:
The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including:
- Aerosol, air quality, atmospheric chemistry and global change;
- Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure;
- Nanoparticle and nanotechnology;
- Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis;
- Effects on the environments;
- Air quality and human health;
- Bioaerosols;
- Indoor air quality;
- Energy and air pollution;
- Pollution control technologies;
- Invention and improvement of sampling instruments and technologies;
- Optical/radiative properties and remote sensing;
- Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission;
- Other topics related to aerosol and air quality.