应用图论和数学计算模型研究神经生理回路

Camila de Andrade Kalil, M. C. Castro, Dilson Silva, C. Cortez
{"title":"应用图论和数学计算模型研究神经生理回路","authors":"Camila de Andrade Kalil, M. C. Castro, Dilson Silva, C. Cortez","doi":"10.4236/OJMSI.2021.92011","DOIUrl":null,"url":null,"abstract":"The aim of the present study is to contribute to the knowledge about the functioning of the neuronal circuits. We built a mathematical-computational model using graph theory for a complex neurophysiological circuit consisting of a reverberating neuronal circuit and a parallel neuronal circuit, which could be coupled. Implementing our model in C++ and applying neurophysiological values found in the literature, we studied the discharge pattern of the reverberant circuit and the parallel circuit separately for the same input signal pattern, examining the influence of the refractory period and the synaptic delay on the respective output signal patterns. Then, the same study was performed for the complete circuit, in which the two circuits were coupled, and the parallel circuit could then influence the functioning of the reverberant. The results showed that the refractory period played an important role in forming the pattern of the output spectrum of a reverberating circuit. The inhibitory action of the parallel circuit was able to regulate the reverberation frequency, suggesting that parallel circuits may be involved in the control of reverberation circuits related to motive activities underlying precision tasks and perhaps underlying neural work processes and immediate memories.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applying Graph Theory and Mathematical-Computational Modelling to Study a Neurophysiological Circuit\",\"authors\":\"Camila de Andrade Kalil, M. C. Castro, Dilson Silva, C. Cortez\",\"doi\":\"10.4236/OJMSI.2021.92011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the present study is to contribute to the knowledge about the functioning of the neuronal circuits. We built a mathematical-computational model using graph theory for a complex neurophysiological circuit consisting of a reverberating neuronal circuit and a parallel neuronal circuit, which could be coupled. Implementing our model in C++ and applying neurophysiological values found in the literature, we studied the discharge pattern of the reverberant circuit and the parallel circuit separately for the same input signal pattern, examining the influence of the refractory period and the synaptic delay on the respective output signal patterns. Then, the same study was performed for the complete circuit, in which the two circuits were coupled, and the parallel circuit could then influence the functioning of the reverberant. The results showed that the refractory period played an important role in forming the pattern of the output spectrum of a reverberating circuit. The inhibitory action of the parallel circuit was able to regulate the reverberation frequency, suggesting that parallel circuits may be involved in the control of reverberation circuits related to motive activities underlying precision tasks and perhaps underlying neural work processes and immediate memories.\",\"PeriodicalId\":56990,\"journal\":{\"name\":\"建模与仿真(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"建模与仿真(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/OJMSI.2021.92011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJMSI.2021.92011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是促进对神经回路功能的认识。我们利用图论建立了一个由混响神经元回路和并行神经元回路组成的复杂神经生理回路的数学计算模型。在c++语言中实现我们的模型,并应用文献中发现的神经生理学值,我们分别研究了相同输入信号模式下混响回路和并行回路的放电模式,考察了不应期和突触延迟对各自输出信号模式的影响。然后,对完整电路进行了相同的研究,其中两个电路耦合,并联电路可以影响混响的功能。结果表明,不应期对混响电路输出谱图的形成起着重要作用。平行回路的抑制作用能够调节混响频率,这表明平行回路可能参与控制与精密任务动机活动相关的混响回路,也可能参与神经工作过程和即时记忆相关的混响回路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying Graph Theory and Mathematical-Computational Modelling to Study a Neurophysiological Circuit
The aim of the present study is to contribute to the knowledge about the functioning of the neuronal circuits. We built a mathematical-computational model using graph theory for a complex neurophysiological circuit consisting of a reverberating neuronal circuit and a parallel neuronal circuit, which could be coupled. Implementing our model in C++ and applying neurophysiological values found in the literature, we studied the discharge pattern of the reverberant circuit and the parallel circuit separately for the same input signal pattern, examining the influence of the refractory period and the synaptic delay on the respective output signal patterns. Then, the same study was performed for the complete circuit, in which the two circuits were coupled, and the parallel circuit could then influence the functioning of the reverberant. The results showed that the refractory period played an important role in forming the pattern of the output spectrum of a reverberating circuit. The inhibitory action of the parallel circuit was able to regulate the reverberation frequency, suggesting that parallel circuits may be involved in the control of reverberation circuits related to motive activities underlying precision tasks and perhaps underlying neural work processes and immediate memories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
期刊最新文献
Comparative Evaluation of the Performance of SWAT, SWAT+, and APEX Models in Simulating Edge of Field Hydrological Processes Making Sense of Anything thru Analytics: Employees Provident Fund (EPF) Simulation of Crack Pattern Formation Due to Shrinkage in a Drying Material Modelling COVID-19 Cumulative Number of Cases in Kenya Using a Negative Binomial INAR (1) Model Understanding the Dynamics Location of Very Large Populations Interacted with Service Points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1