埃塞俄比亚古拉格地区Abshege Woreda玉米作物需水量的测定

Solomon Abirdew, G. Mamo, M. Mengesha
{"title":"埃塞俄比亚古拉格地区Abshege Woreda玉米作物需水量的测定","authors":"Solomon Abirdew, G. Mamo, M. Mengesha","doi":"10.4172/2157-7617.1000439","DOIUrl":null,"url":null,"abstract":"In Ethiopia where crop production overly depends on rainfall and temperature, studying the variability of these climate variables at a local scale is essential to devise proper strategies that enhance adaptive capacity. In light of this, a study was conducted in Abshege Woreda, Gurage Zone to determine crop water requirement of maize, which is major food crop of the area. Ten years i.e., (2006-2015) Indibir station climatological records of (sunshine duration hr/day), maximum and minimum temperature (OC), humidity (%) and wind speed (km/day) at 2 meters height were used in FAO Penman Monteith method. Secondary data were used to collect important soil parameters required for determination of crop water requirement in the study area such as field capacity (FC), permanent wilting point (PWP), initial soil moisture depletion (as % TAM) and available water holding capacity (mm/meter) while data for maximum rain infiltration rates (mm/day) and maximum rooting depth (cm) were obtained from literature based on similar textural class of the soil in the study area. Lengths of total growing periods of the crop was determined from ten years climate data and planting date was 10th May acquired from OAWBA and farmers of the area. Crop coefficients (kc), rooting depth, depletion level and other agronomic parameters were obtained from FAO guidelines (No 56) for each growth stage. The analyzed data indicated that Crop water requirement was estimated using CROPWAT 8.0 for window. A maize variety with a growing period of 140 days to maturity would requires 423 mm depth of water, while 101 mm would be required as supplementary irrigation depth.","PeriodicalId":73713,"journal":{"name":"Journal of earth science & climatic change","volume":"9 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2157-7617.1000439","citationCount":"8","resultStr":"{\"title\":\"Determination of Crop Water Requirements for Maize in Abshege Woreda, Gurage Zone, Ethiopia\",\"authors\":\"Solomon Abirdew, G. Mamo, M. Mengesha\",\"doi\":\"10.4172/2157-7617.1000439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Ethiopia where crop production overly depends on rainfall and temperature, studying the variability of these climate variables at a local scale is essential to devise proper strategies that enhance adaptive capacity. In light of this, a study was conducted in Abshege Woreda, Gurage Zone to determine crop water requirement of maize, which is major food crop of the area. Ten years i.e., (2006-2015) Indibir station climatological records of (sunshine duration hr/day), maximum and minimum temperature (OC), humidity (%) and wind speed (km/day) at 2 meters height were used in FAO Penman Monteith method. Secondary data were used to collect important soil parameters required for determination of crop water requirement in the study area such as field capacity (FC), permanent wilting point (PWP), initial soil moisture depletion (as % TAM) and available water holding capacity (mm/meter) while data for maximum rain infiltration rates (mm/day) and maximum rooting depth (cm) were obtained from literature based on similar textural class of the soil in the study area. Lengths of total growing periods of the crop was determined from ten years climate data and planting date was 10th May acquired from OAWBA and farmers of the area. Crop coefficients (kc), rooting depth, depletion level and other agronomic parameters were obtained from FAO guidelines (No 56) for each growth stage. The analyzed data indicated that Crop water requirement was estimated using CROPWAT 8.0 for window. A maize variety with a growing period of 140 days to maturity would requires 423 mm depth of water, while 101 mm would be required as supplementary irrigation depth.\",\"PeriodicalId\":73713,\"journal\":{\"name\":\"Journal of earth science & climatic change\",\"volume\":\"9 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2157-7617.1000439\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of earth science & climatic change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7617.1000439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of earth science & climatic change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7617.1000439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在作物生产过度依赖于降雨和温度的埃塞俄比亚,在当地尺度上研究这些气候变量的变化对于制定增强适应能力的适当战略至关重要。为此,我们在古拉格地区的Abshege Woreda进行了一项研究,以确定该地区主要粮食作物玉米的作物需水量。FAO Penman Monteith方法使用了10年(2006-2015年)Indibir站2米高度的(日照时数小时/天)、最高和最低温度(OC)、湿度(%)和风速(km/天)的气候记录。次要数据用于收集确定研究区作物需水量所需的重要土壤参数,如田间容量(FC)、永久萎蔫点(PWP)、土壤初始水分枯竭(% TAM)和有效持水量(mm/m),而最大降雨入渗率(mm/day)和最大生根深度(cm)数据则基于研究区土壤相似的质地分类,从文献中获得。作物的总生长期长度是根据十年气候数据确定的,种植日期为5月10日,从OAWBA和该地区的农民那里获得。作物系数(kc)、生根深度、耗竭程度和其他农艺参数根据粮农组织指南(No . 56)获得。分析数据表明,采用CROPWAT 8.0进行窗期作物需水量估算。生长期为140天至成熟期的玉米品种,需水深度为423毫米,补充灌溉深度为101毫米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of Crop Water Requirements for Maize in Abshege Woreda, Gurage Zone, Ethiopia
In Ethiopia where crop production overly depends on rainfall and temperature, studying the variability of these climate variables at a local scale is essential to devise proper strategies that enhance adaptive capacity. In light of this, a study was conducted in Abshege Woreda, Gurage Zone to determine crop water requirement of maize, which is major food crop of the area. Ten years i.e., (2006-2015) Indibir station climatological records of (sunshine duration hr/day), maximum and minimum temperature (OC), humidity (%) and wind speed (km/day) at 2 meters height were used in FAO Penman Monteith method. Secondary data were used to collect important soil parameters required for determination of crop water requirement in the study area such as field capacity (FC), permanent wilting point (PWP), initial soil moisture depletion (as % TAM) and available water holding capacity (mm/meter) while data for maximum rain infiltration rates (mm/day) and maximum rooting depth (cm) were obtained from literature based on similar textural class of the soil in the study area. Lengths of total growing periods of the crop was determined from ten years climate data and planting date was 10th May acquired from OAWBA and farmers of the area. Crop coefficients (kc), rooting depth, depletion level and other agronomic parameters were obtained from FAO guidelines (No 56) for each growth stage. The analyzed data indicated that Crop water requirement was estimated using CROPWAT 8.0 for window. A maize variety with a growing period of 140 days to maturity would requires 423 mm depth of water, while 101 mm would be required as supplementary irrigation depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potentials of Protected Areas as Carbon sinks and Implication on Climate Change in Cameroon A Graphical Explanation of Climate Change Effects of Land Use Changes on Soil Erosion and Sedimentation of Dams in Semi-Arid Regions: Example of N’Fis Watershed in Western High Atlas, Morocco Industrial initiatives towards reducing water pollution Climate change can lead to global anoxia and mass extinctions by disrupting oxygen production in oceans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1