J. Kaňuk, Jozef Šupinský, J. Šašak, J. Hofierka, Yongbou Wang, Qiuzhao Zhang, V. Sedlák, Katarína Onačillová, M. Gallay
{"title":"基于连通分量标记法的半自动激光雷达点云去噪","authors":"J. Kaňuk, Jozef Šupinský, J. Šašak, J. Hofierka, Yongbou Wang, Qiuzhao Zhang, V. Sedlák, Katarína Onačillová, M. Gallay","doi":"10.33542/gc2019-2-08","DOIUrl":null,"url":null,"abstract":"The Smart City concept requires new, fast methods for collection of 3-D data representing features of urban landscape. Laser scanning technology (LiDAR - Light Detection and Ranging) enables such approach producing dense 3-D point clouds of millions of points, which, however, contain noise. Therefore, we developed a new approach allowing for a semi-automatic elimination of data noise resulting from motion of objects within the scanned scene such as persons. We used a connected-component labelling method to filter out the noise points from terrestrial laser scanning point clouds. Our approach was based on a step-by-step object classification with a proper parameterisation. In the first step, all points located close to the predicted terrain were selected. In the second step, the points representing the terrain and floor were classified using the surface filter tool implemented in the RiScan Pro software by RIEGL. The rest of points were classified using point cloud clustering via the connected-component labelling method implemented in the CloudCompare software. In the final step, the operator manually decides whether the point cluster represents the noise. The method was applied to the Cathedral of Saint Elizabeth, a sacral object located in the historical centre of the city of Košice in Slovakia during normal operating hours. We managed to capture approximately 80% of the data noise in total. The method provides a better flexibility in surveying overcrowded city locations using the laser scanning technology.","PeriodicalId":42446,"journal":{"name":"Geographia Cassoviensis","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-automatic LiDAR point cloud denoising using a connected-component labelling method\",\"authors\":\"J. Kaňuk, Jozef Šupinský, J. Šašak, J. Hofierka, Yongbou Wang, Qiuzhao Zhang, V. Sedlák, Katarína Onačillová, M. Gallay\",\"doi\":\"10.33542/gc2019-2-08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Smart City concept requires new, fast methods for collection of 3-D data representing features of urban landscape. Laser scanning technology (LiDAR - Light Detection and Ranging) enables such approach producing dense 3-D point clouds of millions of points, which, however, contain noise. Therefore, we developed a new approach allowing for a semi-automatic elimination of data noise resulting from motion of objects within the scanned scene such as persons. We used a connected-component labelling method to filter out the noise points from terrestrial laser scanning point clouds. Our approach was based on a step-by-step object classification with a proper parameterisation. In the first step, all points located close to the predicted terrain were selected. In the second step, the points representing the terrain and floor were classified using the surface filter tool implemented in the RiScan Pro software by RIEGL. The rest of points were classified using point cloud clustering via the connected-component labelling method implemented in the CloudCompare software. In the final step, the operator manually decides whether the point cluster represents the noise. The method was applied to the Cathedral of Saint Elizabeth, a sacral object located in the historical centre of the city of Košice in Slovakia during normal operating hours. We managed to capture approximately 80% of the data noise in total. The method provides a better flexibility in surveying overcrowded city locations using the laser scanning technology.\",\"PeriodicalId\":42446,\"journal\":{\"name\":\"Geographia Cassoviensis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographia Cassoviensis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33542/gc2019-2-08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographia Cassoviensis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33542/gc2019-2-08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Semi-automatic LiDAR point cloud denoising using a connected-component labelling method
The Smart City concept requires new, fast methods for collection of 3-D data representing features of urban landscape. Laser scanning technology (LiDAR - Light Detection and Ranging) enables such approach producing dense 3-D point clouds of millions of points, which, however, contain noise. Therefore, we developed a new approach allowing for a semi-automatic elimination of data noise resulting from motion of objects within the scanned scene such as persons. We used a connected-component labelling method to filter out the noise points from terrestrial laser scanning point clouds. Our approach was based on a step-by-step object classification with a proper parameterisation. In the first step, all points located close to the predicted terrain were selected. In the second step, the points representing the terrain and floor were classified using the surface filter tool implemented in the RiScan Pro software by RIEGL. The rest of points were classified using point cloud clustering via the connected-component labelling method implemented in the CloudCompare software. In the final step, the operator manually decides whether the point cluster represents the noise. The method was applied to the Cathedral of Saint Elizabeth, a sacral object located in the historical centre of the city of Košice in Slovakia during normal operating hours. We managed to capture approximately 80% of the data noise in total. The method provides a better flexibility in surveying overcrowded city locations using the laser scanning technology.
期刊介绍:
Geographia Cassoviensis is a biannual peer-reviewed journal published by the Pavol Jozef Šafárik University in Košice since 2007. It is available both in print and open-access electronic version. The journal publishes original research articles from Geography and other closely-related research fields. Since 2016 the journal is indexed in SCOPUS and ERIH PLUS - European Reference Index for Humanities and Social Sciences, and since 2017 also in Emerging Sources Citation Index by Clarivate Analytics.