中尺度地形对台风天鸽强雨带影响的数值研究

IF 1.5 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES 热带气象学报 Pub Date : 2021-01-01 DOI:10.46267/j.1006-8775.2021.034
Ouyang Ping, Yong-qing Wang, Xiu-nian Zhang, Tao Li
{"title":"中尺度地形对台风天鸽强雨带影响的数值研究","authors":"Ouyang Ping, Yong-qing Wang, Xiu-nian Zhang, Tao Li","doi":"10.46267/j.1006-8775.2021.034","DOIUrl":null,"url":null,"abstract":": During the movement of Typhoon Hato (2017) over land, heavy rainfall occurred when the spiral rainband which was about 100 km distance away from the center of the typhoon passed the Dayao Mountain (with an elevation of 1.2 km). In this study, the structures and forming mechanism of the heavy rainband along the mountain range are investigated by using high-resolution model simulations. The results show the importance of topography in causing the heavy rainband. Upslope of the steep terrain lifts the cyclonic flow to produce strong upward motion when the rainband passes across with high wind speed. At the same time, the warm and humid air is lifted to the steep slope, causing unstable energy to accumulate over the windward slope, which is conducive to the occurrence of rainfall. In particular, the convective cells generated upstream of rainband will further strengthen and develop due to the uplift when they move close to the mountain foot. Some precipitation particles in the convective cells fall to the ground while others move downstream with the intense updrafts, forming heavy rainfall near the summit. As a result, the largest accumulative rainfall coincides well with the orientation of the mountain ridge.","PeriodicalId":17432,"journal":{"name":"热带气象学报","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Numerical Study of Mesoscale-Topography Influence on the Heavy Rainband of Typhoon Hato\",\"authors\":\"Ouyang Ping, Yong-qing Wang, Xiu-nian Zhang, Tao Li\",\"doi\":\"10.46267/j.1006-8775.2021.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": During the movement of Typhoon Hato (2017) over land, heavy rainfall occurred when the spiral rainband which was about 100 km distance away from the center of the typhoon passed the Dayao Mountain (with an elevation of 1.2 km). In this study, the structures and forming mechanism of the heavy rainband along the mountain range are investigated by using high-resolution model simulations. The results show the importance of topography in causing the heavy rainband. Upslope of the steep terrain lifts the cyclonic flow to produce strong upward motion when the rainband passes across with high wind speed. At the same time, the warm and humid air is lifted to the steep slope, causing unstable energy to accumulate over the windward slope, which is conducive to the occurrence of rainfall. In particular, the convective cells generated upstream of rainband will further strengthen and develop due to the uplift when they move close to the mountain foot. Some precipitation particles in the convective cells fall to the ground while others move downstream with the intense updrafts, forming heavy rainfall near the summit. As a result, the largest accumulative rainfall coincides well with the orientation of the mountain ridge.\",\"PeriodicalId\":17432,\"journal\":{\"name\":\"热带气象学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"热带气象学报\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.46267/j.1006-8775.2021.034\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"热带气象学报","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.46267/j.1006-8775.2021.034","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

:台风天鸽(2017)在陆地上移动过程中,距离台风中心约100公里的螺旋雨带经过大瑶山(海拔1.2公里)时出现了强降雨。本文利用高分辨率模式模拟研究了沿山区强雨带的结构和形成机制。结果表明,地形在暴雨带形成中的重要作用。当雨带以高风速经过时,陡峭地形的上坡抬升气旋流产生强烈的上升运动。同时,暖湿空气被抬升到陡坡上,使不稳定能量在迎风坡上积累,有利于降雨的发生。特别是在雨带上游产生的对流单体,在靠近山脚时,会因抬升而进一步加强和发展。对流单体中的一些降水颗粒落到地面,而另一些则随着强烈的上升气流向下游移动,在峰顶附近形成强降雨。因此,最大的累积降雨量与山脊的方向吻合得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Numerical Study of Mesoscale-Topography Influence on the Heavy Rainband of Typhoon Hato
: During the movement of Typhoon Hato (2017) over land, heavy rainfall occurred when the spiral rainband which was about 100 km distance away from the center of the typhoon passed the Dayao Mountain (with an elevation of 1.2 km). In this study, the structures and forming mechanism of the heavy rainband along the mountain range are investigated by using high-resolution model simulations. The results show the importance of topography in causing the heavy rainband. Upslope of the steep terrain lifts the cyclonic flow to produce strong upward motion when the rainband passes across with high wind speed. At the same time, the warm and humid air is lifted to the steep slope, causing unstable energy to accumulate over the windward slope, which is conducive to the occurrence of rainfall. In particular, the convective cells generated upstream of rainband will further strengthen and develop due to the uplift when they move close to the mountain foot. Some precipitation particles in the convective cells fall to the ground while others move downstream with the intense updrafts, forming heavy rainfall near the summit. As a result, the largest accumulative rainfall coincides well with the orientation of the mountain ridge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
热带气象学报
热带气象学报 METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
1.80
自引率
8.30%
发文量
2793
审稿时长
6-12 weeks
期刊介绍: Information not localized
期刊最新文献
Correcting Black Carbon Absorption Measurements with Micro-aethalometer Model 200: Insights from Comparative Analysis Improved Weather Radar Echo Extrapolation Through Wind Speed Data Fusion Using a New Spatiotemporal Neural Network Model Interannual Variation and Statistical Prediction of Summer Dry and Hot Days in South China from 1970 to 2018 Observational and Mechanistic Analysis of a Nighttime Warm-Sector Heavy Rainfall Event Within the Subtropical High over the Southeastern Coast of China Adaptive Wind Gust and Associated Gust-factor Model for the Gust-producing Weather over the Northern South China Sea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1