{"title":"重组茎菠萝蛋白酶的动力学研究","authors":"M. Bala, M. Mel, M. Jami, A. Amid, H. Salleh","doi":"10.4236/AER.2013.13006","DOIUrl":null,"url":null,"abstract":"Stem bromelain is a plant thiol protease with several industrial and therapeutic applications. This current work presents kinetic studies of recombinant bromelain (recBM) expressed in Escherichia coli BL21-AI on foursynthetic substrates, N-α-carbobenzoxy-L-alanyl-p-nitrophenylester (ZANPE), N-α-carbobenzoxy-L-arginyl-L-ar-ginine-p-nitroanilide (ZAANA), N-α-carbobenzo-xy-L-phenylalanyl-L-valyl-L-arginine-p-nitroanili-de (ZPVANA) and L-pyroglutamyl-L-phenylalanyl-L-leucine-p-nitroanilide (PFLNA). Hydrolytic activities of recBM at various pH and temperature conditions were compared to that of commercial bromelain (cBM). Both enzymes demonstrated high activities at 45o C and pH 5 - 8 for recBM and pH 6 - 8 for cBM. recBM showed marginally lower Kmand slightly higher kcat/Kmfor ZAANA, ZANPE and ZPVANA in comparison to cBM.trans Epoxysuccinyl-L-leucylamido {4- guanidino}butane (E-64) severely affected recBM and cBM hydrolysis of the synthetic substrates by competitive inhibition with Kivalues of 3.6 - 5.1 μM and 5.5 - 6.9 μM for recBM and cBM, respectively. The evaluated properties of recBM including temperature and pH optima, substrate specificity and sensitivity to inhibitors or activators, satisfy the requisites required for food industries.","PeriodicalId":65616,"journal":{"name":"酶研究进展(英文)","volume":"1 1","pages":"52-60"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Kinetic studies on recombinant stem bromelain\",\"authors\":\"M. Bala, M. Mel, M. Jami, A. Amid, H. Salleh\",\"doi\":\"10.4236/AER.2013.13006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stem bromelain is a plant thiol protease with several industrial and therapeutic applications. This current work presents kinetic studies of recombinant bromelain (recBM) expressed in Escherichia coli BL21-AI on foursynthetic substrates, N-α-carbobenzoxy-L-alanyl-p-nitrophenylester (ZANPE), N-α-carbobenzoxy-L-arginyl-L-ar-ginine-p-nitroanilide (ZAANA), N-α-carbobenzo-xy-L-phenylalanyl-L-valyl-L-arginine-p-nitroanili-de (ZPVANA) and L-pyroglutamyl-L-phenylalanyl-L-leucine-p-nitroanilide (PFLNA). Hydrolytic activities of recBM at various pH and temperature conditions were compared to that of commercial bromelain (cBM). Both enzymes demonstrated high activities at 45o C and pH 5 - 8 for recBM and pH 6 - 8 for cBM. recBM showed marginally lower Kmand slightly higher kcat/Kmfor ZAANA, ZANPE and ZPVANA in comparison to cBM.trans Epoxysuccinyl-L-leucylamido {4- guanidino}butane (E-64) severely affected recBM and cBM hydrolysis of the synthetic substrates by competitive inhibition with Kivalues of 3.6 - 5.1 μM and 5.5 - 6.9 μM for recBM and cBM, respectively. The evaluated properties of recBM including temperature and pH optima, substrate specificity and sensitivity to inhibitors or activators, satisfy the requisites required for food industries.\",\"PeriodicalId\":65616,\"journal\":{\"name\":\"酶研究进展(英文)\",\"volume\":\"1 1\",\"pages\":\"52-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"酶研究进展(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/AER.2013.13006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"酶研究进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/AER.2013.13006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stem bromelain is a plant thiol protease with several industrial and therapeutic applications. This current work presents kinetic studies of recombinant bromelain (recBM) expressed in Escherichia coli BL21-AI on foursynthetic substrates, N-α-carbobenzoxy-L-alanyl-p-nitrophenylester (ZANPE), N-α-carbobenzoxy-L-arginyl-L-ar-ginine-p-nitroanilide (ZAANA), N-α-carbobenzo-xy-L-phenylalanyl-L-valyl-L-arginine-p-nitroanili-de (ZPVANA) and L-pyroglutamyl-L-phenylalanyl-L-leucine-p-nitroanilide (PFLNA). Hydrolytic activities of recBM at various pH and temperature conditions were compared to that of commercial bromelain (cBM). Both enzymes demonstrated high activities at 45o C and pH 5 - 8 for recBM and pH 6 - 8 for cBM. recBM showed marginally lower Kmand slightly higher kcat/Kmfor ZAANA, ZANPE and ZPVANA in comparison to cBM.trans Epoxysuccinyl-L-leucylamido {4- guanidino}butane (E-64) severely affected recBM and cBM hydrolysis of the synthetic substrates by competitive inhibition with Kivalues of 3.6 - 5.1 μM and 5.5 - 6.9 μM for recBM and cBM, respectively. The evaluated properties of recBM including temperature and pH optima, substrate specificity and sensitivity to inhibitors or activators, satisfy the requisites required for food industries.