{"title":"广义Rosenau-KdV-RLW方程的SSP IMEX Runge-Kutta WENO格式","authors":"Muyassar Ahmat null, J. Qiu","doi":"10.4208/jms.v55n1.22.01","DOIUrl":null,"url":null,"abstract":"In this article, we present a third-order weighted essentially non-oscillatory (WENO) method for generalized Rosenau-KdV-RLW equation. The third order finite difference WENO reconstruction and central finite differences are applied to discrete advection terms and other terms, respectively, in spatial discretization. In order to achieve the third order accuracy both in space and time, four stage third-order L-stable SSP Implicit-Explicit RungeKutta method (Third-order SSP EXRK method and third-order DIRK method) is applied to temporal discretization. The high order accuracy and essentially non-oscillatory property of finite difference WENO reconstruction are shown for solitary wave and shock wave for Rosenau-KdV and Rosenau-KdV-RLW equations. The efficiency, reliability and excellent SSP property of the numerical scheme are demonstrated by several numerical experiments with large CFL number.","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SSP IMEX Runge-Kutta WENO Scheme for Generalized Rosenau-KdV-RLW Equation\",\"authors\":\"Muyassar Ahmat null, J. Qiu\",\"doi\":\"10.4208/jms.v55n1.22.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a third-order weighted essentially non-oscillatory (WENO) method for generalized Rosenau-KdV-RLW equation. The third order finite difference WENO reconstruction and central finite differences are applied to discrete advection terms and other terms, respectively, in spatial discretization. In order to achieve the third order accuracy both in space and time, four stage third-order L-stable SSP Implicit-Explicit RungeKutta method (Third-order SSP EXRK method and third-order DIRK method) is applied to temporal discretization. The high order accuracy and essentially non-oscillatory property of finite difference WENO reconstruction are shown for solitary wave and shock wave for Rosenau-KdV and Rosenau-KdV-RLW equations. The efficiency, reliability and excellent SSP property of the numerical scheme are demonstrated by several numerical experiments with large CFL number.\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jms.v55n1.22.01\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v55n1.22.01","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SSP IMEX Runge-Kutta WENO Scheme for Generalized Rosenau-KdV-RLW Equation
In this article, we present a third-order weighted essentially non-oscillatory (WENO) method for generalized Rosenau-KdV-RLW equation. The third order finite difference WENO reconstruction and central finite differences are applied to discrete advection terms and other terms, respectively, in spatial discretization. In order to achieve the third order accuracy both in space and time, four stage third-order L-stable SSP Implicit-Explicit RungeKutta method (Third-order SSP EXRK method and third-order DIRK method) is applied to temporal discretization. The high order accuracy and essentially non-oscillatory property of finite difference WENO reconstruction are shown for solitary wave and shock wave for Rosenau-KdV and Rosenau-KdV-RLW equations. The efficiency, reliability and excellent SSP property of the numerical scheme are demonstrated by several numerical experiments with large CFL number.