沸石对胶结砂压实性能及加州承载比的影响

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering and Technology Innovation Pub Date : 2021-01-01 DOI:10.46604/ijeti.2021.7086
G. Norouznejad, I. Shooshpasha, S. Mirhosseini, M. Afzalirad
{"title":"沸石对胶结砂压实性能及加州承载比的影响","authors":"G. Norouznejad, I. Shooshpasha, S. Mirhosseini, M. Afzalirad","doi":"10.46604/ijeti.2021.7086","DOIUrl":null,"url":null,"abstract":"This research investigates the impact of zeolite on the compaction properties and California Bearing Ratio (CBR) of cemented sand. For this purpose, firstly, sand, cement (2, 4, 6, and 8% by the sand dry weight), and zeolite (0%, 30%, 60%, and 90% of cement content, as a replacement material) are mixed. Then, various cylindrical samples with sizes of 101×116 mm and 119×152 mm are prepared for compaction and CBR tests, respectively. After curing for 28 days, the samples are tested according to the standards of compaction and CBR tests. The results depict that the use of zeolite reduces Maximum Dry Density (MDD) while it increases Optimum Moisture Content (OMC) of cemented sand. Furthermore, the inclusion of zeolite up to 30% of cement content contributes to the highest CBR values due to the pozzolanic and chemical reactions. Finally, some correlations with high correlation coefficients are proposed between the CBR and MDD of zeolite-cemented sand.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of Zeolite on the Compaction Properties and California Bearing Ratio (CBR) of Cemented Sand\",\"authors\":\"G. Norouznejad, I. Shooshpasha, S. Mirhosseini, M. Afzalirad\",\"doi\":\"10.46604/ijeti.2021.7086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the impact of zeolite on the compaction properties and California Bearing Ratio (CBR) of cemented sand. For this purpose, firstly, sand, cement (2, 4, 6, and 8% by the sand dry weight), and zeolite (0%, 30%, 60%, and 90% of cement content, as a replacement material) are mixed. Then, various cylindrical samples with sizes of 101×116 mm and 119×152 mm are prepared for compaction and CBR tests, respectively. After curing for 28 days, the samples are tested according to the standards of compaction and CBR tests. The results depict that the use of zeolite reduces Maximum Dry Density (MDD) while it increases Optimum Moisture Content (OMC) of cemented sand. Furthermore, the inclusion of zeolite up to 30% of cement content contributes to the highest CBR values due to the pozzolanic and chemical reactions. Finally, some correlations with high correlation coefficients are proposed between the CBR and MDD of zeolite-cemented sand.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2021.7086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2021.7086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

研究了沸石对胶结砂压实性能和加州承载比(CBR)的影响。为此,首先将砂、水泥(按砂干重的2、4、6和8%)和沸石(水泥含量的0%、30%、60%和90%作为替代材料)混合。然后分别制备尺寸为101×116 mm和119×152 mm的各种圆柱形试样进行压实和CBR试验。养护28d后,按压实试验和CBR试验标准进行试验。结果表明,沸石的使用降低了胶结砂的最大干密度(MDD),提高了最佳含水率(OMC)。此外,沸石的掺入量达到水泥含量的30%,由于火山灰和化学反应,CBR值最高。最后,提出了沸石胶结砂CBR与MDD之间具有高相关系数的相关关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Zeolite on the Compaction Properties and California Bearing Ratio (CBR) of Cemented Sand
This research investigates the impact of zeolite on the compaction properties and California Bearing Ratio (CBR) of cemented sand. For this purpose, firstly, sand, cement (2, 4, 6, and 8% by the sand dry weight), and zeolite (0%, 30%, 60%, and 90% of cement content, as a replacement material) are mixed. Then, various cylindrical samples with sizes of 101×116 mm and 119×152 mm are prepared for compaction and CBR tests, respectively. After curing for 28 days, the samples are tested according to the standards of compaction and CBR tests. The results depict that the use of zeolite reduces Maximum Dry Density (MDD) while it increases Optimum Moisture Content (OMC) of cemented sand. Furthermore, the inclusion of zeolite up to 30% of cement content contributes to the highest CBR values due to the pozzolanic and chemical reactions. Finally, some correlations with high correlation coefficients are proposed between the CBR and MDD of zeolite-cemented sand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
期刊最新文献
A Study on the Vehicle Routing Problem Considering Infeasible Routing Based on the Improved Genetic Algorithm Prediction of Distribution Network Line Loss Rate Based on Ensemble Learning Optimization of SM4 Encryption Algorithm for Power Metering Data Transmission Finite Element Analysis of a Novel Tensegrity-Based Vibratory Platform Simulation and Measurement Analysis of an Integrated Flow Battery Energy-Storage System with Hybrid Wind/Wave Power Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1