G. Accardo, C. Ferone, R. Cioffi, D. Frattini, L. Spiridigliozzi, G. Dell’Agli
{"title":"溶胶-凝胶法制备itsofc掺杂钆陶瓷电解质的电学和微观结构表征","authors":"G. Accardo, C. Ferone, R. Cioffi, D. Frattini, L. Spiridigliozzi, G. Dell’Agli","doi":"10.5301/jabfm.5000265","DOIUrl":null,"url":null,"abstract":"Background Gadolinium-doped ceria (GDC) is a promising alternative as a solid electrolyte for intermediate temperature solid oxide fuel cells (ITSOFCs) due to its low operating temperature and its high electrical conductivity. The traditional synthesis processes require extended time for powder preparation. Sol-gel methodology for electrolyte fabrication is more versatile and efficient. Methods In this work, nanocrystalline ceria powders, with 10 and 20 mol% of gadolinium (Ce0.9Gd0.1O1.95 and Ce0.8Gd0.2O1.9) were synthesized by a modified sol-gel technique, featuring a nitrate-fuel exothermic reaction. GDC tablets were prepared from powders and sintered at 1500°C with a dwell time of 3 hours. The sintered pellets’ microstructure (by SEM) and electrical conductivity (by EIS) were evaluated. The powder properties, such as crystalline structure (by XRD), thermal properties (TGA/DTA), particle size and morphology (TEM) and textural properties (BET method) were determined and, in addition, for the first time an accurate chemical structural evolution (FTIR) was studied. Results Sintered GDC0.8 samples exhibited the maximum theoretical density of 97% and an average grain size of 700 nm. The electrical conductivity vs. temperature showed values ranging from 1.9∙10−2 to 5.5∙10−2 S·cm−1 at 600°C and 800°C for GDC with 20 mol% of gadolinium. Conclusions The methodology investigated showed reduced reaction time, a better control of stoichiometry and low cost. Characterization results demonstrated that these materials can be applied in ITSOFCs due to high conductivity, even at 550°C-600°C. The increased conductivity is related to the improved mobility of gadolinium ions in a high-density structure, with nanometric grains.","PeriodicalId":51074,"journal":{"name":"Journal of Applied Biomaterials & Biomechanics","volume":"14 1","pages":"35 - 41"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5301/jabfm.5000265","citationCount":"33","resultStr":"{\"title\":\"Electrical and Microstructural Characterization of Ceramic Gadolinium-Doped Ceria Electrolytes for ITSOFCs by Sol-Gel Route\",\"authors\":\"G. Accardo, C. Ferone, R. Cioffi, D. Frattini, L. Spiridigliozzi, G. Dell’Agli\",\"doi\":\"10.5301/jabfm.5000265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Gadolinium-doped ceria (GDC) is a promising alternative as a solid electrolyte for intermediate temperature solid oxide fuel cells (ITSOFCs) due to its low operating temperature and its high electrical conductivity. The traditional synthesis processes require extended time for powder preparation. Sol-gel methodology for electrolyte fabrication is more versatile and efficient. Methods In this work, nanocrystalline ceria powders, with 10 and 20 mol% of gadolinium (Ce0.9Gd0.1O1.95 and Ce0.8Gd0.2O1.9) were synthesized by a modified sol-gel technique, featuring a nitrate-fuel exothermic reaction. GDC tablets were prepared from powders and sintered at 1500°C with a dwell time of 3 hours. The sintered pellets’ microstructure (by SEM) and electrical conductivity (by EIS) were evaluated. The powder properties, such as crystalline structure (by XRD), thermal properties (TGA/DTA), particle size and morphology (TEM) and textural properties (BET method) were determined and, in addition, for the first time an accurate chemical structural evolution (FTIR) was studied. Results Sintered GDC0.8 samples exhibited the maximum theoretical density of 97% and an average grain size of 700 nm. The electrical conductivity vs. temperature showed values ranging from 1.9∙10−2 to 5.5∙10−2 S·cm−1 at 600°C and 800°C for GDC with 20 mol% of gadolinium. Conclusions The methodology investigated showed reduced reaction time, a better control of stoichiometry and low cost. Characterization results demonstrated that these materials can be applied in ITSOFCs due to high conductivity, even at 550°C-600°C. The increased conductivity is related to the improved mobility of gadolinium ions in a high-density structure, with nanometric grains.\",\"PeriodicalId\":51074,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Biomechanics\",\"volume\":\"14 1\",\"pages\":\"35 - 41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5301/jabfm.5000265\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5301/jabfm.5000265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5301/jabfm.5000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrical and Microstructural Characterization of Ceramic Gadolinium-Doped Ceria Electrolytes for ITSOFCs by Sol-Gel Route
Background Gadolinium-doped ceria (GDC) is a promising alternative as a solid electrolyte for intermediate temperature solid oxide fuel cells (ITSOFCs) due to its low operating temperature and its high electrical conductivity. The traditional synthesis processes require extended time for powder preparation. Sol-gel methodology for electrolyte fabrication is more versatile and efficient. Methods In this work, nanocrystalline ceria powders, with 10 and 20 mol% of gadolinium (Ce0.9Gd0.1O1.95 and Ce0.8Gd0.2O1.9) were synthesized by a modified sol-gel technique, featuring a nitrate-fuel exothermic reaction. GDC tablets were prepared from powders and sintered at 1500°C with a dwell time of 3 hours. The sintered pellets’ microstructure (by SEM) and electrical conductivity (by EIS) were evaluated. The powder properties, such as crystalline structure (by XRD), thermal properties (TGA/DTA), particle size and morphology (TEM) and textural properties (BET method) were determined and, in addition, for the first time an accurate chemical structural evolution (FTIR) was studied. Results Sintered GDC0.8 samples exhibited the maximum theoretical density of 97% and an average grain size of 700 nm. The electrical conductivity vs. temperature showed values ranging from 1.9∙10−2 to 5.5∙10−2 S·cm−1 at 600°C and 800°C for GDC with 20 mol% of gadolinium. Conclusions The methodology investigated showed reduced reaction time, a better control of stoichiometry and low cost. Characterization results demonstrated that these materials can be applied in ITSOFCs due to high conductivity, even at 550°C-600°C. The increased conductivity is related to the improved mobility of gadolinium ions in a high-density structure, with nanometric grains.