Krushi Modi, Parth Kachhadiya, J M Rathod, P. H. Panchal, K. Parikh
{"title":"用于国防的低成本超材料加载微带天线","authors":"Krushi Modi, Parth Kachhadiya, J M Rathod, P. H. Panchal, K. Parikh","doi":"10.4236/OJAPR.2021.91001","DOIUrl":null,"url":null,"abstract":"We have designed a Metamaterial unit-cell for 9 GHz frequency. Periodic structure was used at 4.25 × 4.25 mm with a thickness of 0.35 mm and giving us the 99.99% of absorbance at 9 GHz in simulated results. We have implemented a rectangular microstrip antenna and loaded it with Metamaterial unit-cells which provided improved results. There were results available for reflection coefficient (s11 parameter) at 9 GHz and also helping for the reduction of the Radar Cross Section of an antenna, which reduced more than 20 dB and not affected its directivity and gain.","PeriodicalId":60503,"journal":{"name":"天线与传播(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-Cost Metamaterial Loaded Microstrip Antenna for Defense Applications\",\"authors\":\"Krushi Modi, Parth Kachhadiya, J M Rathod, P. H. Panchal, K. Parikh\",\"doi\":\"10.4236/OJAPR.2021.91001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have designed a Metamaterial unit-cell for 9 GHz frequency. Periodic structure was used at 4.25 × 4.25 mm with a thickness of 0.35 mm and giving us the 99.99% of absorbance at 9 GHz in simulated results. We have implemented a rectangular microstrip antenna and loaded it with Metamaterial unit-cells which provided improved results. There were results available for reflection coefficient (s11 parameter) at 9 GHz and also helping for the reduction of the Radar Cross Section of an antenna, which reduced more than 20 dB and not affected its directivity and gain.\",\"PeriodicalId\":60503,\"journal\":{\"name\":\"天线与传播(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"天线与传播(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/OJAPR.2021.91001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"天线与传播(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJAPR.2021.91001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Cost Metamaterial Loaded Microstrip Antenna for Defense Applications
We have designed a Metamaterial unit-cell for 9 GHz frequency. Periodic structure was used at 4.25 × 4.25 mm with a thickness of 0.35 mm and giving us the 99.99% of absorbance at 9 GHz in simulated results. We have implemented a rectangular microstrip antenna and loaded it with Metamaterial unit-cells which provided improved results. There were results available for reflection coefficient (s11 parameter) at 9 GHz and also helping for the reduction of the Radar Cross Section of an antenna, which reduced more than 20 dB and not affected its directivity and gain.