应对COVID-19复杂挑战的生物电磁方案

A. Szász
{"title":"应对COVID-19复杂挑战的生物电磁方案","authors":"A. Szász","doi":"10.4236/ojbiphy.2021.111001","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has experienced unprecedented limitations and extraordinary scientific efforts to address this exceptional situation. Despite blanket closures that have resulted in significant financial constraints and losses around the world, research has an “unlimited” budget, with an exceptional concentration of medical and scientific care on a single topic: understanding the mechanisms for overcoming the disease. A large number of clinical trials have been launched with different drugs that have been behind different concepts and solutions. I would like to focus on the complexity aspect of COVID-19. Living systems are organized in a complex way, which implies dynamic stochastic phenomena, and deterministic reductionism can mislead research. When research focuses on individual molecules or pathways as products, it is distracted from the processes in which these products operate, thus neglecting the complex interactions between regulations and feedback controls. Common problems in product-oriented research are articulated as “double-edged swords”, “Janus behavior”, “two-sided action”, with a simple question: “friend or foe?” I focus on the missing complexity. I propose a bioelectromagnetic process that can maintain a complex approach, affecting processes rather than products. This hypothetical proposal is not a comprehensive solution. Complexity itself limits the overall effects of causing “miracles”. Well-designed electromagnetic effects can support current efforts and, in combination with intensively developed pharmaceuticals, bring us closer to a pharmaceutical solution against COVID-19.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Bioelectromagnetic Proposal Approaching the Complex Challenges of COVID-19\",\"authors\":\"A. Szász\",\"doi\":\"10.4236/ojbiphy.2021.111001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic has experienced unprecedented limitations and extraordinary scientific efforts to address this exceptional situation. Despite blanket closures that have resulted in significant financial constraints and losses around the world, research has an “unlimited” budget, with an exceptional concentration of medical and scientific care on a single topic: understanding the mechanisms for overcoming the disease. A large number of clinical trials have been launched with different drugs that have been behind different concepts and solutions. I would like to focus on the complexity aspect of COVID-19. Living systems are organized in a complex way, which implies dynamic stochastic phenomena, and deterministic reductionism can mislead research. When research focuses on individual molecules or pathways as products, it is distracted from the processes in which these products operate, thus neglecting the complex interactions between regulations and feedback controls. Common problems in product-oriented research are articulated as “double-edged swords”, “Janus behavior”, “two-sided action”, with a simple question: “friend or foe?” I focus on the missing complexity. I propose a bioelectromagnetic process that can maintain a complex approach, affecting processes rather than products. This hypothetical proposal is not a comprehensive solution. Complexity itself limits the overall effects of causing “miracles”. Well-designed electromagnetic effects can support current efforts and, in combination with intensively developed pharmaceuticals, bring us closer to a pharmaceutical solution against COVID-19.\",\"PeriodicalId\":59528,\"journal\":{\"name\":\"生物物理学期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物物理学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ojbiphy.2021.111001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ojbiphy.2021.111001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

COVID-19大流行经历了前所未有的限制和非凡的科学努力,以应对这一特殊情况。尽管全面关闭在世界各地造成了严重的财政限制和损失,但研究拥有“无限”的预算,将医疗和科学护理特别集中在一个主题上:了解克服这种疾病的机制。大量的临床试验已经启动,不同的药物背后有不同的概念和解决方案。我想重点谈谈2019冠状病毒病的复杂性。生命系统以复杂的方式组织,这意味着动态随机现象,确定性还原论可能会误导研究。当研究集中于单个分子或作为产物的途径时,它就会从这些产物运作的过程中分散注意力,从而忽略了调控和反馈控制之间复杂的相互作用。以产品为导向的研究中常见的问题被表述为“双刃剑”、“两面性行为”、“双面行动”,用一个简单的问题:“是敌是友?”我关注的是缺失的复杂性。我提出了一种生物电磁过程,它可以维持一种复杂的方法,影响过程而不是产品。这个假设的建议并不是一个全面的解决方案。复杂性本身限制了创造“奇迹”的整体效果。精心设计的电磁效应可以支持当前的努力,并与密集开发的药物相结合,使我们更接近针对COVID-19的药物解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bioelectromagnetic Proposal Approaching the Complex Challenges of COVID-19
The COVID-19 pandemic has experienced unprecedented limitations and extraordinary scientific efforts to address this exceptional situation. Despite blanket closures that have resulted in significant financial constraints and losses around the world, research has an “unlimited” budget, with an exceptional concentration of medical and scientific care on a single topic: understanding the mechanisms for overcoming the disease. A large number of clinical trials have been launched with different drugs that have been behind different concepts and solutions. I would like to focus on the complexity aspect of COVID-19. Living systems are organized in a complex way, which implies dynamic stochastic phenomena, and deterministic reductionism can mislead research. When research focuses on individual molecules or pathways as products, it is distracted from the processes in which these products operate, thus neglecting the complex interactions between regulations and feedback controls. Common problems in product-oriented research are articulated as “double-edged swords”, “Janus behavior”, “two-sided action”, with a simple question: “friend or foe?” I focus on the missing complexity. I propose a bioelectromagnetic process that can maintain a complex approach, affecting processes rather than products. This hypothetical proposal is not a comprehensive solution. Complexity itself limits the overall effects of causing “miracles”. Well-designed electromagnetic effects can support current efforts and, in combination with intensively developed pharmaceuticals, bring us closer to a pharmaceutical solution against COVID-19.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
128
期刊最新文献
Subacute Hyperthyroidism Induced by Treatment with Lithium Salts In Silico Evaluation of the Potential Interference of Boceprevir, Calpain Inhibitor II, Calpain Inhibitor XII, and GC376 in the Binding of SARS-CoV-2 Spike Protein to Human Nanobody Nb20 Contribution of Scintigraphy in the Assessment of Extension of Osteophilic Cancers in Senegal from 2018 to 2021 Understanding Model Independent Genetic Mutations through Trends in Increase in Entropy NLR’s Analogs with Young Blood Cells in Monitoring of Toxicity of Long-Term Preventing Immunosuppression in the Liver Transplant’s Recipients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1