超滤和理化澄清系统对工业废水预处理中UV/H2O2工艺性能的改善

Q3 Environmental Science Revista Ambiente e Agua Pub Date : 2012-12-23 DOI:10.4136/AMBI-AGUA.926
J. C. Mierzwa, E. L. Subtil, I. Hespanhol
{"title":"超滤和理化澄清系统对工业废水预处理中UV/H2O2工艺性能的改善","authors":"J. C. Mierzwa, E. L. Subtil, I. Hespanhol","doi":"10.4136/AMBI-AGUA.926","DOIUrl":null,"url":null,"abstract":"The present study evaluated the removal of TOC from an effluent with high organic load resulted from the treatment of oil-water emulsion by thermal process. Hollow Fiber Ultrafiltration membrane (HF-UF) and physicochemical clarification process were used as pretreatment options to assess the influence of feed effluent quality on the UV/H2O2 oxidation process. Results for TOC removals showed HF-UF and physicochemical clarification processes can significantly improve the efficiency of UV/H2O2 oxidation process, when compared with the direct effluent oxidation. Reaction time for obtaining a TOC removal higher than 90% was reduced to approximately half of the time needed when no pretreatment was applied. Considering both pretreatment processes it was not possible to notice any significant difference on the UV/H2O2 oxidation process performance. However, the complexity of physicochemical process due to the use of three different chemicals and sludge production made the HF-UF process the best pretreatment alternative, without increasing the Total Dissolved Solids of the effluent, a very important issue when water reuse is considered.","PeriodicalId":38374,"journal":{"name":"Revista Ambiente e Agua","volume":"7 1","pages":"31-40"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4136/AMBI-AGUA.926","citationCount":"2","resultStr":"{\"title\":\"UV/H2O2 process performance improvement by ultrafiltration and physicochemical clarification systems for industrial effluent pretreatment\",\"authors\":\"J. C. Mierzwa, E. L. Subtil, I. Hespanhol\",\"doi\":\"10.4136/AMBI-AGUA.926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study evaluated the removal of TOC from an effluent with high organic load resulted from the treatment of oil-water emulsion by thermal process. Hollow Fiber Ultrafiltration membrane (HF-UF) and physicochemical clarification process were used as pretreatment options to assess the influence of feed effluent quality on the UV/H2O2 oxidation process. Results for TOC removals showed HF-UF and physicochemical clarification processes can significantly improve the efficiency of UV/H2O2 oxidation process, when compared with the direct effluent oxidation. Reaction time for obtaining a TOC removal higher than 90% was reduced to approximately half of the time needed when no pretreatment was applied. Considering both pretreatment processes it was not possible to notice any significant difference on the UV/H2O2 oxidation process performance. However, the complexity of physicochemical process due to the use of three different chemicals and sludge production made the HF-UF process the best pretreatment alternative, without increasing the Total Dissolved Solids of the effluent, a very important issue when water reuse is considered.\",\"PeriodicalId\":38374,\"journal\":{\"name\":\"Revista Ambiente e Agua\",\"volume\":\"7 1\",\"pages\":\"31-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4136/AMBI-AGUA.926\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Ambiente e Agua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4136/AMBI-AGUA.926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ambiente e Agua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4136/AMBI-AGUA.926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 2

摘要

本研究评估了热法处理油水乳化液产生的高有机负荷出水中TOC的去除效果。采用中空纤维超滤膜(HF-UF)和理化澄清工艺作为预处理方案,考察了出水水质对UV/H2O2氧化工艺的影响。对TOC的去除结果表明,与直接出水氧化相比,HF-UF和理化澄清工艺可显著提高UV/H2O2氧化工艺的效率。获得TOC去除率高于90%的反应时间减少到没有预处理时所需时间的大约一半。考虑到这两种预处理工艺,不可能在UV/H2O2氧化工艺性能上发现任何显着差异。然而,由于使用三种不同的化学品和产生污泥,物理化学过程的复杂性使HF-UF工艺成为最佳预处理方案,而不会增加出水的总溶解固体,这是考虑水回用时非常重要的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UV/H2O2 process performance improvement by ultrafiltration and physicochemical clarification systems for industrial effluent pretreatment
The present study evaluated the removal of TOC from an effluent with high organic load resulted from the treatment of oil-water emulsion by thermal process. Hollow Fiber Ultrafiltration membrane (HF-UF) and physicochemical clarification process were used as pretreatment options to assess the influence of feed effluent quality on the UV/H2O2 oxidation process. Results for TOC removals showed HF-UF and physicochemical clarification processes can significantly improve the efficiency of UV/H2O2 oxidation process, when compared with the direct effluent oxidation. Reaction time for obtaining a TOC removal higher than 90% was reduced to approximately half of the time needed when no pretreatment was applied. Considering both pretreatment processes it was not possible to notice any significant difference on the UV/H2O2 oxidation process performance. However, the complexity of physicochemical process due to the use of three different chemicals and sludge production made the HF-UF process the best pretreatment alternative, without increasing the Total Dissolved Solids of the effluent, a very important issue when water reuse is considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Ambiente e Agua
Revista Ambiente e Agua Environmental Science-Environmental Science (all)
CiteScore
1.80
自引率
0.00%
发文量
48
审稿时长
22 weeks
期刊最新文献
Previsão probabilística de enchentes para uma pequena bacia hidrográfica do Pantanal Climatic zoning for eucalyptus cultivation through strategic decision analysis Sanitary quality of the rivers in the Communities of Manguinhos´ Territory, Rio de Janeiro, RJ Land use and its impacts on the water quality of the Cachoeirinha Invernada Watershed, Guarulhos (SP) Sustainable access to safe drinking water: fundamental human right in the international and national scene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1