Abdul Hameed Abdul Hameed, Komal Saba Komal Saba, Raheela Taj Raheela Taj, Andaleeb Azam Andaleeb Azam, Rohullah and Amna Paracha Rohullah and Amna Paracha
{"title":"不同尺寸AgCIT和AgPVP与其蛋白冠状粒子的生物相容性比较","authors":"Abdul Hameed Abdul Hameed, Komal Saba Komal Saba, Raheela Taj Raheela Taj, Andaleeb Azam Andaleeb Azam, Rohullah and Amna Paracha Rohullah and Amna Paracha","doi":"10.52568/000594","DOIUrl":null,"url":null,"abstract":"Biocompatibilities of nanoparticles are crucial for biomedical applications. Diverse silver nanoparticles (5 nm, 10 nm, 20 nm, 40 nm and 80 nm) caped with citrate and polyvinylpyrrolidone (PVP) were synthesized and primed their protein coronas. Nanoparticles were characterized with UV-visible spectroscope, Dynamic light scattering (DLS) and Transmission Electron Microscope (TEM). Comparative biocompatibilities were verified and recorded using MTS techniques. Human hepatoma carcinoma HepG2) cell line was used for measuring cytotoxic effect by MTS assays. Deleterious and comparative behaviors of citrate and PVP supported nanoparticles with varied dimensions were investigated and concluded; that citrate caped nanoparticles are comparatively less toxic and independent of size than PVP supported nanoparticles, having increased cytotoxicity with increasing size. The cytotoxic effect of citrate caped and its protein coronas nanoparticles was insignificant, while the boosted concentration of PVP supported nanoparticles enhanced the toxic effect, which endorsed enlarged size and amount of PVP supported nanoparticles. As medicinal precursors, the overwhelming use of PVP nanoparticles should be avoided, and a unique protocol must be designed if its use is crucial and unavoidable.","PeriodicalId":17253,"journal":{"name":"Journal of the chemical society of pakistan","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Biocompatibilities of Various Sizes of AgCIT and AgPVP with their Protein Coronas Nanoparticles\",\"authors\":\"Abdul Hameed Abdul Hameed, Komal Saba Komal Saba, Raheela Taj Raheela Taj, Andaleeb Azam Andaleeb Azam, Rohullah and Amna Paracha Rohullah and Amna Paracha\",\"doi\":\"10.52568/000594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biocompatibilities of nanoparticles are crucial for biomedical applications. Diverse silver nanoparticles (5 nm, 10 nm, 20 nm, 40 nm and 80 nm) caped with citrate and polyvinylpyrrolidone (PVP) were synthesized and primed their protein coronas. Nanoparticles were characterized with UV-visible spectroscope, Dynamic light scattering (DLS) and Transmission Electron Microscope (TEM). Comparative biocompatibilities were verified and recorded using MTS techniques. Human hepatoma carcinoma HepG2) cell line was used for measuring cytotoxic effect by MTS assays. Deleterious and comparative behaviors of citrate and PVP supported nanoparticles with varied dimensions were investigated and concluded; that citrate caped nanoparticles are comparatively less toxic and independent of size than PVP supported nanoparticles, having increased cytotoxicity with increasing size. The cytotoxic effect of citrate caped and its protein coronas nanoparticles was insignificant, while the boosted concentration of PVP supported nanoparticles enhanced the toxic effect, which endorsed enlarged size and amount of PVP supported nanoparticles. As medicinal precursors, the overwhelming use of PVP nanoparticles should be avoided, and a unique protocol must be designed if its use is crucial and unavoidable.\",\"PeriodicalId\":17253,\"journal\":{\"name\":\"Journal of the chemical society of pakistan\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the chemical society of pakistan\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.52568/000594\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the chemical society of pakistan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.52568/000594","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative Biocompatibilities of Various Sizes of AgCIT and AgPVP with their Protein Coronas Nanoparticles
Biocompatibilities of nanoparticles are crucial for biomedical applications. Diverse silver nanoparticles (5 nm, 10 nm, 20 nm, 40 nm and 80 nm) caped with citrate and polyvinylpyrrolidone (PVP) were synthesized and primed their protein coronas. Nanoparticles were characterized with UV-visible spectroscope, Dynamic light scattering (DLS) and Transmission Electron Microscope (TEM). Comparative biocompatibilities were verified and recorded using MTS techniques. Human hepatoma carcinoma HepG2) cell line was used for measuring cytotoxic effect by MTS assays. Deleterious and comparative behaviors of citrate and PVP supported nanoparticles with varied dimensions were investigated and concluded; that citrate caped nanoparticles are comparatively less toxic and independent of size than PVP supported nanoparticles, having increased cytotoxicity with increasing size. The cytotoxic effect of citrate caped and its protein coronas nanoparticles was insignificant, while the boosted concentration of PVP supported nanoparticles enhanced the toxic effect, which endorsed enlarged size and amount of PVP supported nanoparticles. As medicinal precursors, the overwhelming use of PVP nanoparticles should be avoided, and a unique protocol must be designed if its use is crucial and unavoidable.
期刊介绍:
This journal covers different research areas in the field of Chemistry. These include; Analytical Chemistry, Applied Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry. The journal publishes full length articles and Reviews from researchers in academia in addition to featuring comments. Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry.