{"title":"日本一家老年人护理机构中人的行为对室内空气质量的影响","authors":"Nobuyuki Tanaka, Tatsuji Munaka","doi":"10.5572/ajae.2021.089","DOIUrl":null,"url":null,"abstract":"<div><p>Volatile organic compounds (VOCs), CO<sub>2</sub>, temperature, and humidity in a private room in a care facility for the elderly were measured and the behavior of a resident and staff were recorded in order to clarify the effects of the resident’s behavior, especially defecation, on indoor air quality. Average indoor concentrations of total VOCs (in μg m<sup>−3</sup>) in summer, autumn, and winter were 40.9, 16.7, and 18.8, respectively. Average indoor concentrations of CO<sub>2</sub> in summer, autumn, and winter were 813, 761, and 1144 ppm, respectively, revealing a tendency for the concentrations of CO<sub>2</sub> to be higher in winter, in contrast to the VOC concentration. The concentrations of VOCs and CO<sub>2</sub> were 1.1 to 1.5 times higher when the resident was present in the room than when the resident was absent. This result suggests that one of the main sources of VOC and CO<sub>2</sub> emissions in indoor air was the resident. Acetic acid, 1-butanol, propanoic acid, hexanoic acid, and phenol, which are contained in human sweat, exhaled air, and excrement, were the predominant VOCs in the air of the room regardless of the season, and these five components accounted for more than 90% of the total VOCs. The concentrations of these components were higher when the resident was present in the room, suggesting that the resident was the main source of these components. Based on the changes in the VOC and CO<sub>2</sub> concentrations over time and the records of the resident and the staff, it was noted that VOC concentrations decreased, in some cases, before and after diaper changes. Our research suggests that certain aspects of the behavior of residents can be inferred by monitoring changes in indoor air quality.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.5572/ajae.2021.089.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of Human Behavior on Indoor Air Quality in a Care Facility for the Elderly in Japan\",\"authors\":\"Nobuyuki Tanaka, Tatsuji Munaka\",\"doi\":\"10.5572/ajae.2021.089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Volatile organic compounds (VOCs), CO<sub>2</sub>, temperature, and humidity in a private room in a care facility for the elderly were measured and the behavior of a resident and staff were recorded in order to clarify the effects of the resident’s behavior, especially defecation, on indoor air quality. Average indoor concentrations of total VOCs (in μg m<sup>−3</sup>) in summer, autumn, and winter were 40.9, 16.7, and 18.8, respectively. Average indoor concentrations of CO<sub>2</sub> in summer, autumn, and winter were 813, 761, and 1144 ppm, respectively, revealing a tendency for the concentrations of CO<sub>2</sub> to be higher in winter, in contrast to the VOC concentration. The concentrations of VOCs and CO<sub>2</sub> were 1.1 to 1.5 times higher when the resident was present in the room than when the resident was absent. This result suggests that one of the main sources of VOC and CO<sub>2</sub> emissions in indoor air was the resident. Acetic acid, 1-butanol, propanoic acid, hexanoic acid, and phenol, which are contained in human sweat, exhaled air, and excrement, were the predominant VOCs in the air of the room regardless of the season, and these five components accounted for more than 90% of the total VOCs. The concentrations of these components were higher when the resident was present in the room, suggesting that the resident was the main source of these components. Based on the changes in the VOC and CO<sub>2</sub> concentrations over time and the records of the resident and the staff, it was noted that VOC concentrations decreased, in some cases, before and after diaper changes. Our research suggests that certain aspects of the behavior of residents can be inferred by monitoring changes in indoor air quality.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.5572/ajae.2021.089.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.5572/ajae.2021.089\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.5572/ajae.2021.089","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of Human Behavior on Indoor Air Quality in a Care Facility for the Elderly in Japan
Volatile organic compounds (VOCs), CO2, temperature, and humidity in a private room in a care facility for the elderly were measured and the behavior of a resident and staff were recorded in order to clarify the effects of the resident’s behavior, especially defecation, on indoor air quality. Average indoor concentrations of total VOCs (in μg m−3) in summer, autumn, and winter were 40.9, 16.7, and 18.8, respectively. Average indoor concentrations of CO2 in summer, autumn, and winter were 813, 761, and 1144 ppm, respectively, revealing a tendency for the concentrations of CO2 to be higher in winter, in contrast to the VOC concentration. The concentrations of VOCs and CO2 were 1.1 to 1.5 times higher when the resident was present in the room than when the resident was absent. This result suggests that one of the main sources of VOC and CO2 emissions in indoor air was the resident. Acetic acid, 1-butanol, propanoic acid, hexanoic acid, and phenol, which are contained in human sweat, exhaled air, and excrement, were the predominant VOCs in the air of the room regardless of the season, and these five components accounted for more than 90% of the total VOCs. The concentrations of these components were higher when the resident was present in the room, suggesting that the resident was the main source of these components. Based on the changes in the VOC and CO2 concentrations over time and the records of the resident and the staff, it was noted that VOC concentrations decreased, in some cases, before and after diaper changes. Our research suggests that certain aspects of the behavior of residents can be inferred by monitoring changes in indoor air quality.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.