R. Masa’deh, D. Almajali, Ala'aldin Alrowwad, Rami Suleiman Alkhawaldeh, Sufian M Khwaldeh, B. Obeidat
{"title":"评估影响大学生对2019冠状病毒病危机期间使用的电子学习系统满意度的因素:在约旦高等教育机构的实地研究","authors":"R. Masa’deh, D. Almajali, Ala'aldin Alrowwad, Rami Suleiman Alkhawaldeh, Sufian M Khwaldeh, B. Obeidat","doi":"10.5267/j.ijdns.2022.11.003","DOIUrl":null,"url":null,"abstract":"E-learning results from the integration of technology and education and has become an effective learning medium today. E-learning courses and systems with various services are on the rise owing to its importance. E-learning systems should be evaluated to assure successful delivery, effective usage, and positive impacts on learners. A holistic model that identifies various levels of success on a vast range of success determinants was proposed. The model was empirically validated using data obtained from 724 e-learning student users in Jordan. Structural Equation Modelling (SEM) was used in data analyses. Results showed that perceived usefulness of information systems, user training, system quality, and management support have positive effects on user’s behavioral intention; whereas perceived ease of use has not. Also, SEM displayed that user behavioral intention has a positive effect on information systems use, use on student satisfaction, and the latter on student loyalty. Machine Learning (ML) methods produce high correlation values reaching up to 80% in predicting Behavior Intention (BI) from the input factors, and student loyalty from student satisfaction factors. This indicates that the ML are promising techniques to forecast the future targets based on the input independent features.","PeriodicalId":36543,"journal":{"name":"International Journal of Data and Network Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evaluation of factors affecting university students' satisfaction with e-learning systems used dur-ing Covid-19 crisis: A field study in Jordanian higher education institutions\",\"authors\":\"R. Masa’deh, D. Almajali, Ala'aldin Alrowwad, Rami Suleiman Alkhawaldeh, Sufian M Khwaldeh, B. Obeidat\",\"doi\":\"10.5267/j.ijdns.2022.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"E-learning results from the integration of technology and education and has become an effective learning medium today. E-learning courses and systems with various services are on the rise owing to its importance. E-learning systems should be evaluated to assure successful delivery, effective usage, and positive impacts on learners. A holistic model that identifies various levels of success on a vast range of success determinants was proposed. The model was empirically validated using data obtained from 724 e-learning student users in Jordan. Structural Equation Modelling (SEM) was used in data analyses. Results showed that perceived usefulness of information systems, user training, system quality, and management support have positive effects on user’s behavioral intention; whereas perceived ease of use has not. Also, SEM displayed that user behavioral intention has a positive effect on information systems use, use on student satisfaction, and the latter on student loyalty. Machine Learning (ML) methods produce high correlation values reaching up to 80% in predicting Behavior Intention (BI) from the input factors, and student loyalty from student satisfaction factors. This indicates that the ML are promising techniques to forecast the future targets based on the input independent features.\",\"PeriodicalId\":36543,\"journal\":{\"name\":\"International Journal of Data and Network Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data and Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.ijdns.2022.11.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data and Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.ijdns.2022.11.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Evaluation of factors affecting university students' satisfaction with e-learning systems used dur-ing Covid-19 crisis: A field study in Jordanian higher education institutions
E-learning results from the integration of technology and education and has become an effective learning medium today. E-learning courses and systems with various services are on the rise owing to its importance. E-learning systems should be evaluated to assure successful delivery, effective usage, and positive impacts on learners. A holistic model that identifies various levels of success on a vast range of success determinants was proposed. The model was empirically validated using data obtained from 724 e-learning student users in Jordan. Structural Equation Modelling (SEM) was used in data analyses. Results showed that perceived usefulness of information systems, user training, system quality, and management support have positive effects on user’s behavioral intention; whereas perceived ease of use has not. Also, SEM displayed that user behavioral intention has a positive effect on information systems use, use on student satisfaction, and the latter on student loyalty. Machine Learning (ML) methods produce high correlation values reaching up to 80% in predicting Behavior Intention (BI) from the input factors, and student loyalty from student satisfaction factors. This indicates that the ML are promising techniques to forecast the future targets based on the input independent features.