Conggang Huang, Ting Shao, Faliang Duan, Ruixue Li, Ming Luo, Qiaochun Huang, Yuan Wang, Zhihua Luo
{"title":"LncRNA FOXD3-AS1 通过海绵状 miR-3918 上调 CCND1 促进胶质母细胞瘤进展","authors":"Conggang Huang, Ting Shao, Faliang Duan, Ruixue Li, Ming Luo, Qiaochun Huang, Yuan Wang, Zhihua Luo","doi":"10.5137/1019-5149.JTN.38366-22.2","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To elucidate the pro-tumorigenic role of IncRNA FOXD3-AS1 in glioblastoma.</p><p><strong>Material and methods: </strong>The expression of miR-3918, FOXD3-AS1, and CCND1 was measured in glioblastoma cells and tissues using reverse transcriptase quantitative PCR (RT-qPCR). The effect of FOXD3-AS1 silencing on the proliferation of glioblastoma cells was assessed in vitro using CCK-8 and colony formation assays and in vivo using xenograft mouse models. Additionally, the expression levels of the apoptosis-related proteins, Bcl-2 and Bax, were assessed using western blotting. Bioinformatic analysis and luciferase reporter assays assisted by RNA immunoprecipitation (RIP) and RNA pull-down experiments were conducted to validate the interactions among FOXD3-AS1, CCND1, and miR-3918.</p><p><strong>Results: </strong>FOXD3-AS1 and CCND1 were highly expressed in glioblastoma tissues and cells, whereas miR-3918 was poorly expressed. The expressions of FOXD3-AS1 and CCND1 were inversely associated with miR-3918 levels in glioblastoma tissues. FOXD3-AS1 silencing weakened the proliferative capacity and accelerated apoptosis of glioblastoma cells in vitro and hampered tumor growth in vivo. Mechanical investigations showed that FOXD3-AS1 knockdown increased miR-3918 expression and inhibited glioblastoma cell growth. Meanwhile, the miR-3918 inhibitor restored CCND1 expression and induced the opposite outcome.</p><p><strong>Conclusion: </strong>FOXD3-AS1 facilitates the CCND1-driven progression of glioblastoma by serving as a competing endogenous RNA (ceRNA) for miR-3918. This suggests that FOXD3-AS1 may be a potential therapeutic target for the management of glioblastoma development.</p>","PeriodicalId":23395,"journal":{"name":"Turkish neurosurgery","volume":"1 1","pages":"224-234"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LncRNA FOXD3-AS1 Contributes to Glioblastoma Progression Via Sponging miR-3918 to Upregulate CCND1.\",\"authors\":\"Conggang Huang, Ting Shao, Faliang Duan, Ruixue Li, Ming Luo, Qiaochun Huang, Yuan Wang, Zhihua Luo\",\"doi\":\"10.5137/1019-5149.JTN.38366-22.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>To elucidate the pro-tumorigenic role of IncRNA FOXD3-AS1 in glioblastoma.</p><p><strong>Material and methods: </strong>The expression of miR-3918, FOXD3-AS1, and CCND1 was measured in glioblastoma cells and tissues using reverse transcriptase quantitative PCR (RT-qPCR). The effect of FOXD3-AS1 silencing on the proliferation of glioblastoma cells was assessed in vitro using CCK-8 and colony formation assays and in vivo using xenograft mouse models. Additionally, the expression levels of the apoptosis-related proteins, Bcl-2 and Bax, were assessed using western blotting. Bioinformatic analysis and luciferase reporter assays assisted by RNA immunoprecipitation (RIP) and RNA pull-down experiments were conducted to validate the interactions among FOXD3-AS1, CCND1, and miR-3918.</p><p><strong>Results: </strong>FOXD3-AS1 and CCND1 were highly expressed in glioblastoma tissues and cells, whereas miR-3918 was poorly expressed. The expressions of FOXD3-AS1 and CCND1 were inversely associated with miR-3918 levels in glioblastoma tissues. FOXD3-AS1 silencing weakened the proliferative capacity and accelerated apoptosis of glioblastoma cells in vitro and hampered tumor growth in vivo. Mechanical investigations showed that FOXD3-AS1 knockdown increased miR-3918 expression and inhibited glioblastoma cell growth. Meanwhile, the miR-3918 inhibitor restored CCND1 expression and induced the opposite outcome.</p><p><strong>Conclusion: </strong>FOXD3-AS1 facilitates the CCND1-driven progression of glioblastoma by serving as a competing endogenous RNA (ceRNA) for miR-3918. This suggests that FOXD3-AS1 may be a potential therapeutic target for the management of glioblastoma development.</p>\",\"PeriodicalId\":23395,\"journal\":{\"name\":\"Turkish neurosurgery\",\"volume\":\"1 1\",\"pages\":\"224-234\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish neurosurgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5137/1019-5149.JTN.38366-22.2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5137/1019-5149.JTN.38366-22.2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
LncRNA FOXD3-AS1 Contributes to Glioblastoma Progression Via Sponging miR-3918 to Upregulate CCND1.
Aim: To elucidate the pro-tumorigenic role of IncRNA FOXD3-AS1 in glioblastoma.
Material and methods: The expression of miR-3918, FOXD3-AS1, and CCND1 was measured in glioblastoma cells and tissues using reverse transcriptase quantitative PCR (RT-qPCR). The effect of FOXD3-AS1 silencing on the proliferation of glioblastoma cells was assessed in vitro using CCK-8 and colony formation assays and in vivo using xenograft mouse models. Additionally, the expression levels of the apoptosis-related proteins, Bcl-2 and Bax, were assessed using western blotting. Bioinformatic analysis and luciferase reporter assays assisted by RNA immunoprecipitation (RIP) and RNA pull-down experiments were conducted to validate the interactions among FOXD3-AS1, CCND1, and miR-3918.
Results: FOXD3-AS1 and CCND1 were highly expressed in glioblastoma tissues and cells, whereas miR-3918 was poorly expressed. The expressions of FOXD3-AS1 and CCND1 were inversely associated with miR-3918 levels in glioblastoma tissues. FOXD3-AS1 silencing weakened the proliferative capacity and accelerated apoptosis of glioblastoma cells in vitro and hampered tumor growth in vivo. Mechanical investigations showed that FOXD3-AS1 knockdown increased miR-3918 expression and inhibited glioblastoma cell growth. Meanwhile, the miR-3918 inhibitor restored CCND1 expression and induced the opposite outcome.
Conclusion: FOXD3-AS1 facilitates the CCND1-driven progression of glioblastoma by serving as a competing endogenous RNA (ceRNA) for miR-3918. This suggests that FOXD3-AS1 may be a potential therapeutic target for the management of glioblastoma development.
期刊介绍:
Turkish Neurosurgery is a peer-reviewed, multidisciplinary, open access and totally free journal directed at an audience of neurosurgery physicians and scientists. The official language of the journal is English. The journal publishes original articles in the form of clinical and basic research. Turkish Neurosurgery will only publish studies that have institutional review board (IRB) approval and have strictly observed an acceptable follow-up period. With the exception of reference presentation, Turkish Neurosurgery requires that all manuscripts be prepared in accordance with the Uniform Requirements for Manuscripts Submitted to Biomedical Journals.