在拉奎拉地震序列期间,亚平宁山脉中部(意大利)二氧化碳气体排放变化的证据(2009年3月- 4月)

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Bollettino Di Geofisica Teorica Ed Applicata Pub Date : 2012-03-01 DOI:10.4430/BGTA0043
P. Bonfanti, N. Genzano, J. Heinicke, F. Italiano, G. Martinelli, N. Pergola, L. Telesca, V. Tramutoli
{"title":"在拉奎拉地震序列期间,亚平宁山脉中部(意大利)二氧化碳气体排放变化的证据(2009年3月- 4月)","authors":"P. Bonfanti, N. Genzano, J. Heinicke, F. Italiano, G. Martinelli, N. Pergola, L. Telesca, V. Tramutoli","doi":"10.4430/BGTA0043","DOIUrl":null,"url":null,"abstract":"The occurrence of intense CO2 degassing processes generating hundreds of cold CO2rich gas emissions is typical of the central Apennines. In 2009, significant anomalies were detected coinciding with the L’Aquila seismic sequence as a consequence of a wide degassing process. Over the same time-span, space-time anomalies in Thermal InfraRed (TIR) satellite imagery possibly related to the increase of green-house gas (such as CO2, CH4, etc.) emission rates were detected in central Italy during the seismic swarm by a Robust Satellite Technique (RST) data analysis. A gas geochemical survey carried out in the L’Aquila area confirms the deep crustal origin of the anomalous gas emission detected by ground measurements. Anomalous fluid related signals were recorded some days before the mainshock coinciding with the most marked TIR anomalies independently detected by the RST analysis over 3 different types of satellite data. Anomalous gas emissions detected by ground measurements lasted some weeks, putting in evidence relationships with crustal deformative processes associated with the seismic sequence. Together with previous ground observations in the Umbria-Marche area, present ground and satellite TIR observations, are compatible with the hypothesis that a central Apennines area, much wider than the L’Aquila (March-April 2009) epicentral one, was actually affected by anomalous increases in CO2 release thus providing new tools to better understand the processes occurring behind a seismic shock.","PeriodicalId":50728,"journal":{"name":"Bollettino Di Geofisica Teorica Ed Applicata","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4430/BGTA0043","citationCount":"33","resultStr":"{\"title\":\"Evidence of CO2-gas emission variations in the central Apennines (Italy) during the L'Aquila seismic sequence (March-April 2009)\",\"authors\":\"P. Bonfanti, N. Genzano, J. Heinicke, F. Italiano, G. Martinelli, N. Pergola, L. Telesca, V. Tramutoli\",\"doi\":\"10.4430/BGTA0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of intense CO2 degassing processes generating hundreds of cold CO2rich gas emissions is typical of the central Apennines. In 2009, significant anomalies were detected coinciding with the L’Aquila seismic sequence as a consequence of a wide degassing process. Over the same time-span, space-time anomalies in Thermal InfraRed (TIR) satellite imagery possibly related to the increase of green-house gas (such as CO2, CH4, etc.) emission rates were detected in central Italy during the seismic swarm by a Robust Satellite Technique (RST) data analysis. A gas geochemical survey carried out in the L’Aquila area confirms the deep crustal origin of the anomalous gas emission detected by ground measurements. Anomalous fluid related signals were recorded some days before the mainshock coinciding with the most marked TIR anomalies independently detected by the RST analysis over 3 different types of satellite data. Anomalous gas emissions detected by ground measurements lasted some weeks, putting in evidence relationships with crustal deformative processes associated with the seismic sequence. Together with previous ground observations in the Umbria-Marche area, present ground and satellite TIR observations, are compatible with the hypothesis that a central Apennines area, much wider than the L’Aquila (March-April 2009) epicentral one, was actually affected by anomalous increases in CO2 release thus providing new tools to better understand the processes occurring behind a seismic shock.\",\"PeriodicalId\":50728,\"journal\":{\"name\":\"Bollettino Di Geofisica Teorica Ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2012-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4430/BGTA0043\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bollettino Di Geofisica Teorica Ed Applicata\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.4430/BGTA0043\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bollettino Di Geofisica Teorica Ed Applicata","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4430/BGTA0043","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 33

摘要

强烈的二氧化碳脱气过程产生数百个富含二氧化碳的冷气体排放是亚平宁山脉中部的典型特征。2009年,由于大面积脱气过程,在L 'Aquila地震序列中发现了明显的异常。在相同的时间跨度内,通过鲁棒卫星技术(Robust satellite technology, RST)数据分析,在意大利中部发现了可能与地震群期间温室气体(如CO2、CH4等)排放率增加有关的热红外(TIR)卫星图像的时空异常。在拉奎拉地区进行的气体地球化学调查证实了地面测量检测到的异常气体排放的深层地壳起源。与异常流体相关的信号在主震前几天被记录下来,与RST分析在3种不同类型的卫星数据上独立检测到的最明显的TIR异常相吻合。地面测量检测到的异常气体排放持续了几个星期,提供了与地震序列相关的地壳变形过程相关的证据。结合之前在翁布里亚-马尔凯地区的地面观测,目前的地面和卫星TIR观测结果与亚平宁中部地区的假设相一致,该地区比拉奎拉(2009年3月至4月)震中更宽,实际上受到了二氧化碳释放异常增加的影响,从而为更好地理解地震冲击背后发生的过程提供了新的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evidence of CO2-gas emission variations in the central Apennines (Italy) during the L'Aquila seismic sequence (March-April 2009)
The occurrence of intense CO2 degassing processes generating hundreds of cold CO2rich gas emissions is typical of the central Apennines. In 2009, significant anomalies were detected coinciding with the L’Aquila seismic sequence as a consequence of a wide degassing process. Over the same time-span, space-time anomalies in Thermal InfraRed (TIR) satellite imagery possibly related to the increase of green-house gas (such as CO2, CH4, etc.) emission rates were detected in central Italy during the seismic swarm by a Robust Satellite Technique (RST) data analysis. A gas geochemical survey carried out in the L’Aquila area confirms the deep crustal origin of the anomalous gas emission detected by ground measurements. Anomalous fluid related signals were recorded some days before the mainshock coinciding with the most marked TIR anomalies independently detected by the RST analysis over 3 different types of satellite data. Anomalous gas emissions detected by ground measurements lasted some weeks, putting in evidence relationships with crustal deformative processes associated with the seismic sequence. Together with previous ground observations in the Umbria-Marche area, present ground and satellite TIR observations, are compatible with the hypothesis that a central Apennines area, much wider than the L’Aquila (March-April 2009) epicentral one, was actually affected by anomalous increases in CO2 release thus providing new tools to better understand the processes occurring behind a seismic shock.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bollettino Di Geofisica Teorica Ed Applicata
Bollettino Di Geofisica Teorica Ed Applicata 地学-地球化学与地球物理
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The "Bollettino di Geofisica Teorica ed Applicata" is an international open access journal dedicated to the publication of original papers dealing with Deep Earth Geophysics, Near Surface Geophysics, Exploration Geophysics, Borehole Geophysics, Geodynamics and Seismotectonics, Seismology, Engineering Seismology, Geophysical Modelling, Geodesy, Remote Sensing, Seismic and Geodetic Networks, Oceanography, and their application in the fields of Energy, Natural Resources, Environment and Climate, Policies and Regulations, Risk and Security, Technological Development.
期刊最新文献
The 6 May 1976 Friuli earthquake: re-evaluating and consolidating transnational macroseismic data Seismogenic zonation as a branch of the logic tree for the new Italian seismic hazard map - MPS16: a preliminary outline Controlled laboratory test for the investigation of LNAPL contamination using a 2.0 GHz ground penetrating radar Genetic algorithm full-waveform inversion: uncertainty estimation and validation of the results GPR Investigation to map the sub-soil of the St. John Lateran Basilica (Rome, Italy)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1