遗传算法全波形反演:不确定性估计及结果验证

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Bollettino Di Geofisica Teorica Ed Applicata Pub Date : 2017-01-01 DOI:10.4430/BGTA0199
A. Sajeva, M. Aleardi, A. Mazzotti
{"title":"遗传算法全波形反演:不确定性估计及结果验证","authors":"A. Sajeva, M. Aleardi, A. Mazzotti","doi":"10.4430/BGTA0199","DOIUrl":null,"url":null,"abstract":"We cast the genetic algorithm-full waveform inversion (GA-FWI) in a probabilistic framework that through a multi-step procedure, allows us to estimate the posterior probability distribution (PPD) in model space. Since GA is not a Markov chain Monte Carlo method, it is necessary to refine the PPD estimated by GA (GA PPD) via a resampling of the model space with a Gibbs sampler (GS), thus obtaining the GA+GS PPDs. We apply this procedure to two acoustic 2D models, an inclusion model and the Marmousi model, and we find a good agreement between the derived PPDs and the varying resolution due to changes in the seismic illumination. Finally, we randomly extract several models from the so derived PPDs to start many local full-waveform inversions (LFWIs), which produce final high-resolution models. This set of models is then used to numerically estimate the final uncertainty (GA+GS+LFWI PPD). The multimodal and wide PPDs derived from the GA optimization, become unimodal and narrower after LFWI and, in the well illuminated parts of the subsurface, the final GA+GS+LFWI PPDs contain the true model parameters. This confirms the ability of the GA optimization in finding a velocity model suitable as input to LFWI.","PeriodicalId":50728,"journal":{"name":"Bollettino Di Geofisica Teorica Ed Applicata","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Genetic algorithm full-waveform inversion: uncertainty estimation and validation of the results\",\"authors\":\"A. Sajeva, M. Aleardi, A. Mazzotti\",\"doi\":\"10.4430/BGTA0199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We cast the genetic algorithm-full waveform inversion (GA-FWI) in a probabilistic framework that through a multi-step procedure, allows us to estimate the posterior probability distribution (PPD) in model space. Since GA is not a Markov chain Monte Carlo method, it is necessary to refine the PPD estimated by GA (GA PPD) via a resampling of the model space with a Gibbs sampler (GS), thus obtaining the GA+GS PPDs. We apply this procedure to two acoustic 2D models, an inclusion model and the Marmousi model, and we find a good agreement between the derived PPDs and the varying resolution due to changes in the seismic illumination. Finally, we randomly extract several models from the so derived PPDs to start many local full-waveform inversions (LFWIs), which produce final high-resolution models. This set of models is then used to numerically estimate the final uncertainty (GA+GS+LFWI PPD). The multimodal and wide PPDs derived from the GA optimization, become unimodal and narrower after LFWI and, in the well illuminated parts of the subsurface, the final GA+GS+LFWI PPDs contain the true model parameters. This confirms the ability of the GA optimization in finding a velocity model suitable as input to LFWI.\",\"PeriodicalId\":50728,\"journal\":{\"name\":\"Bollettino Di Geofisica Teorica Ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bollettino Di Geofisica Teorica Ed Applicata\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.4430/BGTA0199\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bollettino Di Geofisica Teorica Ed Applicata","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4430/BGTA0199","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 14

摘要

我们将遗传算法-全波形反演(GA-FWI)置于概率框架中,通过多步骤程序,使我们能够估计模型空间中的后验概率分布(PPD)。由于遗传算法不是马尔可夫链蒙特卡罗方法,因此有必要通过Gibbs采样器(GS)对模型空间进行重采样来改进遗传算法估计的PPD (GA PPD),从而得到GA+GS PPD。我们将此方法应用于两个声学二维模型,一个包体模型和一个Marmousi模型,我们发现推导出的ppd与地震光照变化引起的分辨率变化之间有很好的一致性。最后,我们从得到的ppd中随机提取几个模型,开始许多局部全波形反演(LFWIs),从而产生最终的高分辨率模型。然后使用这组模型对最终不确定性(GA+GS+LFWI PPD)进行数值估计。由GA优化得到的多模态和宽ppd在LFWI后变为单模态和窄ppd,并且在地下照明良好的部分,最终的GA+GS+LFWI ppd包含真实的模型参数。这证实了GA优化在寻找适合作为LFWI输入的速度模型方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic algorithm full-waveform inversion: uncertainty estimation and validation of the results
We cast the genetic algorithm-full waveform inversion (GA-FWI) in a probabilistic framework that through a multi-step procedure, allows us to estimate the posterior probability distribution (PPD) in model space. Since GA is not a Markov chain Monte Carlo method, it is necessary to refine the PPD estimated by GA (GA PPD) via a resampling of the model space with a Gibbs sampler (GS), thus obtaining the GA+GS PPDs. We apply this procedure to two acoustic 2D models, an inclusion model and the Marmousi model, and we find a good agreement between the derived PPDs and the varying resolution due to changes in the seismic illumination. Finally, we randomly extract several models from the so derived PPDs to start many local full-waveform inversions (LFWIs), which produce final high-resolution models. This set of models is then used to numerically estimate the final uncertainty (GA+GS+LFWI PPD). The multimodal and wide PPDs derived from the GA optimization, become unimodal and narrower after LFWI and, in the well illuminated parts of the subsurface, the final GA+GS+LFWI PPDs contain the true model parameters. This confirms the ability of the GA optimization in finding a velocity model suitable as input to LFWI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bollettino Di Geofisica Teorica Ed Applicata
Bollettino Di Geofisica Teorica Ed Applicata 地学-地球化学与地球物理
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The "Bollettino di Geofisica Teorica ed Applicata" is an international open access journal dedicated to the publication of original papers dealing with Deep Earth Geophysics, Near Surface Geophysics, Exploration Geophysics, Borehole Geophysics, Geodynamics and Seismotectonics, Seismology, Engineering Seismology, Geophysical Modelling, Geodesy, Remote Sensing, Seismic and Geodetic Networks, Oceanography, and their application in the fields of Energy, Natural Resources, Environment and Climate, Policies and Regulations, Risk and Security, Technological Development.
期刊最新文献
The 6 May 1976 Friuli earthquake: re-evaluating and consolidating transnational macroseismic data Seismogenic zonation as a branch of the logic tree for the new Italian seismic hazard map - MPS16: a preliminary outline Controlled laboratory test for the investigation of LNAPL contamination using a 2.0 GHz ground penetrating radar Genetic algorithm full-waveform inversion: uncertainty estimation and validation of the results GPR Investigation to map the sub-soil of the St. John Lateran Basilica (Rome, Italy)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1