某火电厂煤灰堆积场附近环境辐射影响评价

A. Boukhair, Laila Belahbib, Khadija Azkour, H. Nebdi, M. Benjelloun, A. Nourreddine
{"title":"某火电厂煤灰堆积场附近环境辐射影响评价","authors":"A. Boukhair, Laila Belahbib, Khadija Azkour, H. Nebdi, M. Benjelloun, A. Nourreddine","doi":"10.4236/WJNST.2016.64022","DOIUrl":null,"url":null,"abstract":"The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of several million years and will, therefore, have time to migrate to the soil, atmospheric air, surface water, and groundwater. This impact depends mainly on the activity of these coal ashes, the duration of exposure to such waste, transfers to the air, and the leaching phenomenon by rainwater. In this study, and so as to assess the radiological impact of coal ashes of the storage site of the JLEC-Morocco thermal power plant on environment, some analyses are performed by alpha dosimetry and a digital dosimeter on samples of coal ashes, soil, atmospheric air, surface water and groundwater belonging to a perimeter of 10 km around that site. The obtained results show that, within the studied area, the radiological impact on the soil of the coal ashes of the storage site is insignificant even though the concentrations of radon in the near vicinity (1 to 2 km) are moderately important, and remain below 200 Bq/m3. In the atmospheric air, this impact remains medium for the neighborhoods of the storage site (2 to 3 km) with radon activities superior to 10 Bq/m3. These results also show that there may be a water contamination of wells located at the storage site without any transfer of radioactivity into the groundwater of the area studied where the concentrations of radon are less than 11.1 Bq/l.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"06 1","pages":"206-216"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Assessment of the Radiological Impact on the Environment near a Storage Site of Coal Ashes in a Thermal Power Plant\",\"authors\":\"A. Boukhair, Laila Belahbib, Khadija Azkour, H. Nebdi, M. Benjelloun, A. Nourreddine\",\"doi\":\"10.4236/WJNST.2016.64022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of several million years and will, therefore, have time to migrate to the soil, atmospheric air, surface water, and groundwater. This impact depends mainly on the activity of these coal ashes, the duration of exposure to such waste, transfers to the air, and the leaching phenomenon by rainwater. In this study, and so as to assess the radiological impact of coal ashes of the storage site of the JLEC-Morocco thermal power plant on environment, some analyses are performed by alpha dosimetry and a digital dosimeter on samples of coal ashes, soil, atmospheric air, surface water and groundwater belonging to a perimeter of 10 km around that site. The obtained results show that, within the studied area, the radiological impact on the soil of the coal ashes of the storage site is insignificant even though the concentrations of radon in the near vicinity (1 to 2 km) are moderately important, and remain below 200 Bq/m3. In the atmospheric air, this impact remains medium for the neighborhoods of the storage site (2 to 3 km) with radon activities superior to 10 Bq/m3. These results also show that there may be a water contamination of wells located at the storage site without any transfer of radioactivity into the groundwater of the area studied where the concentrations of radon are less than 11.1 Bq/l.\",\"PeriodicalId\":61566,\"journal\":{\"name\":\"核科学与技术国际期刊(英文)\",\"volume\":\"06 1\",\"pages\":\"206-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"核科学与技术国际期刊(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/WJNST.2016.64022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"核科学与技术国际期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/WJNST.2016.64022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

煤灰在贮存地点的自然放射性增强,其放射性影响是由于存在自然产生的放射性核素。其中一些放射性核素具有数百万年的放射性期,因此有时间迁移到土壤、大气、地表水和地下水中。这种影响主要取决于这些煤灰的活性、接触这些废物的时间、向空气的转移以及雨水的淋滤现象。在本研究中,为了评估jleco -摩洛哥热电厂贮存场址煤灰对环境的辐射影响,用α剂量仪和数字剂量仪对场址周围10公里范围内的煤灰、土壤、大气、地表水和地下水样品进行了一些分析。研究结果表明,在研究区域内,尽管附近(1 ~ 2 km)的氡浓度中等重要,但对贮存场址煤灰土壤的辐射影响不显著,并保持在200 Bq/m3以下。在贮存地点附近(2至3公里)的大气中,这种影响仍然是中等的,氡活度高于10 Bq/m3。这些结果还表明,在氡浓度低于11.1 Bq/l的研究地区,储存地点的水井可能存在水污染,但没有任何放射性转移到地下水中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of the Radiological Impact on the Environment near a Storage Site of Coal Ashes in a Thermal Power Plant
The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of several million years and will, therefore, have time to migrate to the soil, atmospheric air, surface water, and groundwater. This impact depends mainly on the activity of these coal ashes, the duration of exposure to such waste, transfers to the air, and the leaching phenomenon by rainwater. In this study, and so as to assess the radiological impact of coal ashes of the storage site of the JLEC-Morocco thermal power plant on environment, some analyses are performed by alpha dosimetry and a digital dosimeter on samples of coal ashes, soil, atmospheric air, surface water and groundwater belonging to a perimeter of 10 km around that site. The obtained results show that, within the studied area, the radiological impact on the soil of the coal ashes of the storage site is insignificant even though the concentrations of radon in the near vicinity (1 to 2 km) are moderately important, and remain below 200 Bq/m3. In the atmospheric air, this impact remains medium for the neighborhoods of the storage site (2 to 3 km) with radon activities superior to 10 Bq/m3. These results also show that there may be a water contamination of wells located at the storage site without any transfer of radioactivity into the groundwater of the area studied where the concentrations of radon are less than 11.1 Bq/l.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
198
期刊最新文献
System Variables Design of Safety Analysis for Fast Reactors Numerical Analysis of Heating Technique in Corium Melt Pool Convection Flow Field & Thermal Interaction in a Volumetrically Heated Molten Pool Feasibility to Convert the NuScale SMR from UO2 to a Mixed (U, Th)O2 Core: A Parametric Study of Fuel Element—Seed-Blanket Concept Cause Analysis for Wall Thinning of Small-Bore Piping in Nuclear Power Plant by ToSPACE, FLUENT and Theoretical Evaluation The Systematics Study of (n, p) Reaction Cross-Sections at 14.7 MeV Neutron Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1