阿拉比卡咖啡和雪松树:整合生物和非生物驱动因素

IF 0.5 Q4 ENVIRONMENTAL SCIENCES Revista Brasileira de Ciencias Ambientais Pub Date : 2021-01-01 DOI:10.5327/z21769478763
L. Pereira, S. Matsumoto, U. S. Oliveira, A. Viana, Ednilson Carvalho Teixeira
{"title":"阿拉比卡咖啡和雪松树:整合生物和非生物驱动因素","authors":"L. Pereira, S. Matsumoto, U. S. Oliveira, A. Viana, Ednilson Carvalho Teixeira","doi":"10.5327/z21769478763","DOIUrl":null,"url":null,"abstract":"Agroforestry systems are important forms of sustainable farming, providing several ecosystem services. However, characterization and management of factors such as thermal and light heterogeneity, as well as interactions between trees and coffee plants, are determinants for achieving the desired sustainability. This study aimed to verify whether different distances between Coffea arabica L. and Australian red cedar can change soil and microclimate characteristics and how they alter morphological and physiological attributes of coffee plants over the rainy season and a prolonged drought period (veranico) in Summer. The trial was carried out in the municipality of Barra do Choça, in an area with Australian red cedar trees (Toona ciliata M. Roem), distributed in two hedges, spaced 19.8 × 3 m apart, in a northeast-southwest direction, and coffee plants var. Catucaí Vermelho (3.3 × 0.5 m). Treatments were defined by the distance between the coffee plants and the first row of the Australian red cedar hedge (3.3 m, T1; 6.6 m, T2; 9.9 m, T3; 13.2 m, T4; 16.4 m, T5). Morphology and physiology of coffee plants, soil temperature, incident light on coffee plants, and the allelopathic potential of Australian red cedar leaf extracts were assessed in the wet and dry season of the 2016–2017 Summer. Temperatures fluctuated less in experimental units close to the hedge. The reduced growth of coffee plants close to the hedges was related to self-shading associated with light restriction by the trees. The experiment showed the allelopathic potential of Australian red cedar leaves.","PeriodicalId":33560,"journal":{"name":"Revista Brasileira de Ciencias Ambientais","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arabica coffee and cedar tree: integrating biotic and abiotic drivers\",\"authors\":\"L. Pereira, S. Matsumoto, U. S. Oliveira, A. Viana, Ednilson Carvalho Teixeira\",\"doi\":\"10.5327/z21769478763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agroforestry systems are important forms of sustainable farming, providing several ecosystem services. However, characterization and management of factors such as thermal and light heterogeneity, as well as interactions between trees and coffee plants, are determinants for achieving the desired sustainability. This study aimed to verify whether different distances between Coffea arabica L. and Australian red cedar can change soil and microclimate characteristics and how they alter morphological and physiological attributes of coffee plants over the rainy season and a prolonged drought period (veranico) in Summer. The trial was carried out in the municipality of Barra do Choça, in an area with Australian red cedar trees (Toona ciliata M. Roem), distributed in two hedges, spaced 19.8 × 3 m apart, in a northeast-southwest direction, and coffee plants var. Catucaí Vermelho (3.3 × 0.5 m). Treatments were defined by the distance between the coffee plants and the first row of the Australian red cedar hedge (3.3 m, T1; 6.6 m, T2; 9.9 m, T3; 13.2 m, T4; 16.4 m, T5). Morphology and physiology of coffee plants, soil temperature, incident light on coffee plants, and the allelopathic potential of Australian red cedar leaf extracts were assessed in the wet and dry season of the 2016–2017 Summer. Temperatures fluctuated less in experimental units close to the hedge. The reduced growth of coffee plants close to the hedges was related to self-shading associated with light restriction by the trees. The experiment showed the allelopathic potential of Australian red cedar leaves.\",\"PeriodicalId\":33560,\"journal\":{\"name\":\"Revista Brasileira de Ciencias Ambientais\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Ciencias Ambientais\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5327/z21769478763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Ciencias Ambientais","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5327/z21769478763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

农林复合系统是可持续农业的重要形式,提供多种生态系统服务。然而,表征和管理的因素,如热和光的异质性,以及树木和咖啡植物之间的相互作用,是实现预期的可持续性的决定因素。本研究旨在验证阿拉比卡咖啡和澳大利亚红杉之间的距离是否会改变土壤和小气候特征,以及它们如何改变咖啡树在雨季和夏季长期干旱期(veranico)的形态和生理属性。试验在Barra do choa市进行,该地区有澳大利亚红杉树(Toona ciliata m . Roem),分布在东北-西南方向的两个树篱中,间隔19.8 × 3 m,以及咖啡树Catucaí Vermelho (3.3 × 0.5 m)。处理方法由咖啡树与澳大利亚红杉树篱第一排之间的距离(3.3 m, T1;6.6 m, T2;9.9 m, T3;13.2 m, T4;16.4 m, T5)。在2016-2017夏季的湿季和旱季,研究了咖啡树的形态和生理、土壤温度、入射光和澳大利亚红杉叶提取物的化感作用潜力。靠近树篱的实验单元温度波动较小。靠近树篱的咖啡树的生长减少与树木的光限制相关的自遮荫有关。实验表明,澳大利亚红杉叶具有化感作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arabica coffee and cedar tree: integrating biotic and abiotic drivers
Agroforestry systems are important forms of sustainable farming, providing several ecosystem services. However, characterization and management of factors such as thermal and light heterogeneity, as well as interactions between trees and coffee plants, are determinants for achieving the desired sustainability. This study aimed to verify whether different distances between Coffea arabica L. and Australian red cedar can change soil and microclimate characteristics and how they alter morphological and physiological attributes of coffee plants over the rainy season and a prolonged drought period (veranico) in Summer. The trial was carried out in the municipality of Barra do Choça, in an area with Australian red cedar trees (Toona ciliata M. Roem), distributed in two hedges, spaced 19.8 × 3 m apart, in a northeast-southwest direction, and coffee plants var. Catucaí Vermelho (3.3 × 0.5 m). Treatments were defined by the distance between the coffee plants and the first row of the Australian red cedar hedge (3.3 m, T1; 6.6 m, T2; 9.9 m, T3; 13.2 m, T4; 16.4 m, T5). Morphology and physiology of coffee plants, soil temperature, incident light on coffee plants, and the allelopathic potential of Australian red cedar leaf extracts were assessed in the wet and dry season of the 2016–2017 Summer. Temperatures fluctuated less in experimental units close to the hedge. The reduced growth of coffee plants close to the hedges was related to self-shading associated with light restriction by the trees. The experiment showed the allelopathic potential of Australian red cedar leaves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
25 weeks
期刊最新文献
Water loss associated with food loss and waste in Brazil Model of integrated territorial assessment for environmental justice applied to sanitation Study on Brazilian agribusiness wastewaters: composition, physical‑chemical characterization, volumetric production and resource recovery Optimization of palm oil biodiesel production using response surface methodology Stock and indices of carbon management under different soil use systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1