S. Shobairi, Hui Lin, V. Usoltsev, A. Osmirko, I. S. Tsepordey, Zilin Ye, S. A. Anees
{"title":"欧亚气候梯度下杨树和桦树林分生物量的比较格局","authors":"S. Shobairi, Hui Lin, V. Usoltsev, A. Osmirko, I. S. Tsepordey, Zilin Ye, S. A. Anees","doi":"10.5552/crojfe.2022.1340","DOIUrl":null,"url":null,"abstract":"Based on the generated database of 413 and 490 plots of biomass of Populus spp. and Betula spp. in Eurasia, statistically significant changes in the structure of forest stand biomass were found with shifts in January temperatures and average annual precipitation. When analyzing harvest data, the propeller-shaped biomass patterns in the gradients of average annual precipitation and average January temperatures are obtained, which are common for both deciduous species. Correspondingly, Populus and Betula forests show a regularity common to the biomass components: in the cold zones the precipitation increase leads to the increase of biomass, and in the warm ones to their decrease. In wet areas, the increase of temperature causes the decrease of biomass, and in dry areas, it causes their increase. In accordance with the law of the limiting factor by Liebig-Shelford, it is shown that both an decrease in temperature in dry conditions and a increase in precipitation in a warm climate lead to a decrease in the biomass of trees.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Pattern for Populus spp. and Betula spp. Stand Biomass in Eurasian Climate Gradients\",\"authors\":\"S. Shobairi, Hui Lin, V. Usoltsev, A. Osmirko, I. S. Tsepordey, Zilin Ye, S. A. Anees\",\"doi\":\"10.5552/crojfe.2022.1340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the generated database of 413 and 490 plots of biomass of Populus spp. and Betula spp. in Eurasia, statistically significant changes in the structure of forest stand biomass were found with shifts in January temperatures and average annual precipitation. When analyzing harvest data, the propeller-shaped biomass patterns in the gradients of average annual precipitation and average January temperatures are obtained, which are common for both deciduous species. Correspondingly, Populus and Betula forests show a regularity common to the biomass components: in the cold zones the precipitation increase leads to the increase of biomass, and in the warm ones to their decrease. In wet areas, the increase of temperature causes the decrease of biomass, and in dry areas, it causes their increase. In accordance with the law of the limiting factor by Liebig-Shelford, it is shown that both an decrease in temperature in dry conditions and a increase in precipitation in a warm climate lead to a decrease in the biomass of trees.\",\"PeriodicalId\":55204,\"journal\":{\"name\":\"Croatian Journal of Forest Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Croatian Journal of Forest Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5552/crojfe.2022.1340\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Journal of Forest Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5552/crojfe.2022.1340","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
A Comparative Pattern for Populus spp. and Betula spp. Stand Biomass in Eurasian Climate Gradients
Based on the generated database of 413 and 490 plots of biomass of Populus spp. and Betula spp. in Eurasia, statistically significant changes in the structure of forest stand biomass were found with shifts in January temperatures and average annual precipitation. When analyzing harvest data, the propeller-shaped biomass patterns in the gradients of average annual precipitation and average January temperatures are obtained, which are common for both deciduous species. Correspondingly, Populus and Betula forests show a regularity common to the biomass components: in the cold zones the precipitation increase leads to the increase of biomass, and in the warm ones to their decrease. In wet areas, the increase of temperature causes the decrease of biomass, and in dry areas, it causes their increase. In accordance with the law of the limiting factor by Liebig-Shelford, it is shown that both an decrease in temperature in dry conditions and a increase in precipitation in a warm climate lead to a decrease in the biomass of trees.
期刊介绍:
Croatian Journal of Forest Engineering (CROJFE) is a refereed journal distributed internationally, publishing original research articles concerning forest engineering, both theoretical and empirical. The journal covers all aspects of forest engineering research, ranging from basic to applied subjects. In addition to research articles, preliminary research notes and subject reviews are published.
Journal Subjects and Fields:
-Harvesting systems and technologies-
Forest biomass and carbon sequestration-
Forest road network planning, management and construction-
System organization and forest operations-
IT technologies and remote sensing-
Engineering in urban forestry-
Vehicle/machine design and evaluation-
Modelling and sustainable management-
Eco-efficient technologies in forestry-
Ergonomics and work safety