Cox比例风险与多元自适应样条回归分析电子商务中产品销售时间

IF 0.3 Q4 MATHEMATICS, APPLIED International Journal of Applied Mathematics & Statistics Pub Date : 2014-06-29 DOI:10.5281/ZENODO.50649
E. Irwansyah, D. A. N. O. Stefani, R. D. Bekti
{"title":"Cox比例风险与多元自适应样条回归分析电子商务中产品销售时间","authors":"E. Irwansyah, D. A. N. O. Stefani, R. D. Bekti","doi":"10.5281/ZENODO.50649","DOIUrl":null,"url":null,"abstract":"Cox Proportional Hazard (Cox PH) model is a survival analysis method to perform model of relationship between independent variable and dependent variable which shown by time until an event occurs. This method compute residuals, martingale or deviance, which can used to diagnostic the lack of fit of a model and PH assumption. The alternative method if these not satisfied is Multivariate Adaptive Regression Splines(MARS) approach. This method use to perform the analysis of product selling time in e-commerce. The samples were collected by survey on website. The results areMARS model with martingale residuals has good performance than residual deviance. MARS modeling with martingale residuals have GCV minimum 0.502 with a combination of BF = 10, MI = 1, and MO = 2 with information number of products sold (X6) that contribute. Variables significant effect on α = 5% were BF_2 = (X_6-135)+, BF_3 = (X_6-170)+, and BF_5=(X_6-196)+.","PeriodicalId":44573,"journal":{"name":"International Journal of Applied Mathematics & Statistics","volume":"53 1","pages":"109-115"},"PeriodicalIF":0.3000,"publicationDate":"2014-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cox Proportional Hazard with Multivariate Adaptive Regression Splines to Analyze the Product Sales Time in E-Commerce\",\"authors\":\"E. Irwansyah, D. A. N. O. Stefani, R. D. Bekti\",\"doi\":\"10.5281/ZENODO.50649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cox Proportional Hazard (Cox PH) model is a survival analysis method to perform model of relationship between independent variable and dependent variable which shown by time until an event occurs. This method compute residuals, martingale or deviance, which can used to diagnostic the lack of fit of a model and PH assumption. The alternative method if these not satisfied is Multivariate Adaptive Regression Splines(MARS) approach. This method use to perform the analysis of product selling time in e-commerce. The samples were collected by survey on website. The results areMARS model with martingale residuals has good performance than residual deviance. MARS modeling with martingale residuals have GCV minimum 0.502 with a combination of BF = 10, MI = 1, and MO = 2 with information number of products sold (X6) that contribute. Variables significant effect on α = 5% were BF_2 = (X_6-135)+, BF_3 = (X_6-170)+, and BF_5=(X_6-196)+.\",\"PeriodicalId\":44573,\"journal\":{\"name\":\"International Journal of Applied Mathematics & Statistics\",\"volume\":\"53 1\",\"pages\":\"109-115\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2014-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics & Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.50649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics & Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.50649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

Cox比例风险模型(Cox Proportional Hazard model, Cox PH)是一种生存分析方法,对事件发生前的自变量和因变量之间的关系以时间为单位进行建模。该方法计算残差、鞅或偏差,可用于诊断模型和PH假设的拟合不足。如果不满足这些条件,则采用多元自适应样条回归(MARS)方法。该方法用于电子商务中产品销售时间的分析。样本采用网上调查的方式采集。结果表明,带有鞅残差的mars模型比残差偏差具有更好的性能。带有鞅残差的MARS模型的GCV最小值为0.502,其中BF = 10, MI = 1, MO = 2,以及所销售产品的信息数量(X6)。对α = 5%有显著影响的变量为BF_2 =(X_6-135)+、BF_3 =(X_6-170)+和BF_5=(X_6-196)+。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cox Proportional Hazard with Multivariate Adaptive Regression Splines to Analyze the Product Sales Time in E-Commerce
Cox Proportional Hazard (Cox PH) model is a survival analysis method to perform model of relationship between independent variable and dependent variable which shown by time until an event occurs. This method compute residuals, martingale or deviance, which can used to diagnostic the lack of fit of a model and PH assumption. The alternative method if these not satisfied is Multivariate Adaptive Regression Splines(MARS) approach. This method use to perform the analysis of product selling time in e-commerce. The samples were collected by survey on website. The results areMARS model with martingale residuals has good performance than residual deviance. MARS modeling with martingale residuals have GCV minimum 0.502 with a combination of BF = 10, MI = 1, and MO = 2 with information number of products sold (X6) that contribute. Variables significant effect on α = 5% were BF_2 = (X_6-135)+, BF_3 = (X_6-170)+, and BF_5=(X_6-196)+.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian Estimation of the Entropy of the Half-Logistic Distribution Based on Type-II Censored Samples Left-turn Track Function of Bicycle Flow in Intersection Cox Proportional Hazard with Multivariate Adaptive Regression Splines to Analyze the Product Sales Time in E-Commerce Some application of ideals of Г-AG-ring Simultaneous Lasso and Dantzig Selector in High Dimensional Nonparametric Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1