{"title":"基于人工神经网络的误差模式保证校正","authors":"Srdan Brkic, P. Ivaniš, B. Vasic","doi":"10.5937/telfor2202051b","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze applicability of single-and two-hidden-layer feed-forward artificial neural networks, SLFNs and TLFNs, respectively, in decoding linear block codes. Based on the provable capability of SLFNs and TLFNs to approximate discrete functions, we discuss sizes of the network capable to perform maximum likelihood decoding. Furthermore, we propose a decoding scheme, which use artificial neural networks (ANNs) to lower the error-floors of low-density parity-check (LDPC) codes. By learning a small number of error patterns, uncorrectable with typical decoders of LDPC codes, ANN can lower the error-floor by an order of magnitude, with only marginal average complexity incense.","PeriodicalId":37719,"journal":{"name":"Telfor Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On guaranteed correction of error patterns with artificial neural networks\",\"authors\":\"Srdan Brkic, P. Ivaniš, B. Vasic\",\"doi\":\"10.5937/telfor2202051b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze applicability of single-and two-hidden-layer feed-forward artificial neural networks, SLFNs and TLFNs, respectively, in decoding linear block codes. Based on the provable capability of SLFNs and TLFNs to approximate discrete functions, we discuss sizes of the network capable to perform maximum likelihood decoding. Furthermore, we propose a decoding scheme, which use artificial neural networks (ANNs) to lower the error-floors of low-density parity-check (LDPC) codes. By learning a small number of error patterns, uncorrectable with typical decoders of LDPC codes, ANN can lower the error-floor by an order of magnitude, with only marginal average complexity incense.\",\"PeriodicalId\":37719,\"journal\":{\"name\":\"Telfor Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telfor Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/telfor2202051b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telfor Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/telfor2202051b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
On guaranteed correction of error patterns with artificial neural networks
In this paper, we analyze applicability of single-and two-hidden-layer feed-forward artificial neural networks, SLFNs and TLFNs, respectively, in decoding linear block codes. Based on the provable capability of SLFNs and TLFNs to approximate discrete functions, we discuss sizes of the network capable to perform maximum likelihood decoding. Furthermore, we propose a decoding scheme, which use artificial neural networks (ANNs) to lower the error-floors of low-density parity-check (LDPC) codes. By learning a small number of error patterns, uncorrectable with typical decoders of LDPC codes, ANN can lower the error-floor by an order of magnitude, with only marginal average complexity incense.
期刊介绍:
The TELFOR Journal is an open access international scientific journal publishing improved and extended versions of the selected best papers initially reported at the annual TELFOR Conference (www.telfor.rs), papers invited by the Editorial Board, and papers submitted by authors themselves for publishing. All papers are subject to reviewing. The TELFOR Journal is published in the English language, with both electronic and printed versions. Being an IEEE co-supported publication, it will follow all the IEEE rules and procedures. The TELFOR Journal covers all the essential branches of modern telecommunications and information technology: Telecommunications Policy and Services, Telecommunications Networks, Radio Communications, Communications Systems, Signal Processing, Optical Communications, Applied Electromagnetics, Applied Electronics, Multimedia, Software Tools and Applications, as well as other fields related to ICT. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies towards the information and knowledge society. The Journal provides a medium for exchanging research results and technological achievements accomplished by the scientific community from academia and industry.