Tamara Stajić, J. Jovanović, Nebojša Jovanović, M. Janković
{"title":"基于深度数据库生理信号的情绪识别机器学习方法比较","authors":"Tamara Stajić, J. Jovanović, Nebojša Jovanović, M. Janković","doi":"10.5937/telfor2202073s","DOIUrl":null,"url":null,"abstract":"Recognizing and accurately classifying human emotion is a complex and challenging task. Recently, great attention has been paid to the emotion recognition methods using three different approaches: based on non-physiological signals (like speech and facial expression), based on physiological signals, or based on hybrid approaches. Non-physiological signals are easily controlled by the individual, so these approaches have downsides in real world applications. In this paper, an approach based on physiological signals which cannot be willingly influenced (electroencephalogram, heartrate, respiration, galvanic skin response, electromyography, body temperature) is presented. A publicly available DEAP database was used for the binary classification (high vs low for various threshold values) considering four frequently used emotional parameters (arousal, valence, liking and dominance). We have extracted 1490 features from the dataset, analyzed their predictive value for each emotion parameter and compared three different classification approaches - Support Vector Machine, Boosting algorithms and Artificial Neural Networks.","PeriodicalId":37719,"journal":{"name":"Telfor Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of machine learning approaches to emotion recognition based on deap database physiological signals\",\"authors\":\"Tamara Stajić, J. Jovanović, Nebojša Jovanović, M. Janković\",\"doi\":\"10.5937/telfor2202073s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognizing and accurately classifying human emotion is a complex and challenging task. Recently, great attention has been paid to the emotion recognition methods using three different approaches: based on non-physiological signals (like speech and facial expression), based on physiological signals, or based on hybrid approaches. Non-physiological signals are easily controlled by the individual, so these approaches have downsides in real world applications. In this paper, an approach based on physiological signals which cannot be willingly influenced (electroencephalogram, heartrate, respiration, galvanic skin response, electromyography, body temperature) is presented. A publicly available DEAP database was used for the binary classification (high vs low for various threshold values) considering four frequently used emotional parameters (arousal, valence, liking and dominance). We have extracted 1490 features from the dataset, analyzed their predictive value for each emotion parameter and compared three different classification approaches - Support Vector Machine, Boosting algorithms and Artificial Neural Networks.\",\"PeriodicalId\":37719,\"journal\":{\"name\":\"Telfor Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telfor Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/telfor2202073s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telfor Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/telfor2202073s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Comparison of machine learning approaches to emotion recognition based on deap database physiological signals
Recognizing and accurately classifying human emotion is a complex and challenging task. Recently, great attention has been paid to the emotion recognition methods using three different approaches: based on non-physiological signals (like speech and facial expression), based on physiological signals, or based on hybrid approaches. Non-physiological signals are easily controlled by the individual, so these approaches have downsides in real world applications. In this paper, an approach based on physiological signals which cannot be willingly influenced (electroencephalogram, heartrate, respiration, galvanic skin response, electromyography, body temperature) is presented. A publicly available DEAP database was used for the binary classification (high vs low for various threshold values) considering four frequently used emotional parameters (arousal, valence, liking and dominance). We have extracted 1490 features from the dataset, analyzed their predictive value for each emotion parameter and compared three different classification approaches - Support Vector Machine, Boosting algorithms and Artificial Neural Networks.
期刊介绍:
The TELFOR Journal is an open access international scientific journal publishing improved and extended versions of the selected best papers initially reported at the annual TELFOR Conference (www.telfor.rs), papers invited by the Editorial Board, and papers submitted by authors themselves for publishing. All papers are subject to reviewing. The TELFOR Journal is published in the English language, with both electronic and printed versions. Being an IEEE co-supported publication, it will follow all the IEEE rules and procedures. The TELFOR Journal covers all the essential branches of modern telecommunications and information technology: Telecommunications Policy and Services, Telecommunications Networks, Radio Communications, Communications Systems, Signal Processing, Optical Communications, Applied Electromagnetics, Applied Electronics, Multimedia, Software Tools and Applications, as well as other fields related to ICT. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies towards the information and knowledge society. The Journal provides a medium for exchanging research results and technological achievements accomplished by the scientific community from academia and industry.