基础燃烧研究的最新进展与挑战

Q2 Mathematics Advances in Mechanics Pub Date : 2014-03-27 DOI:10.6052/1000-0992-14-011
琚诒光
{"title":"基础燃烧研究的最新进展与挑战","authors":"琚诒光","doi":"10.6052/1000-0992-14-011","DOIUrl":null,"url":null,"abstract":"More than 80% of world energy is converted by combustion. Develop- ment of efficient next generation advanced engines by using alternative fuels and operating at extreme conditions is one of the most important solutions to increase energy sustainability. To realize the advanced engine design, the challenges in combustion research are therefore to advance fundamental understanding of com- bustion chemistry and dynamics from molecule scales to engine scales and to de- velop quantitatively predictive tools and innovative combustion technologies. This review will present the recent progresses and technical challenges in fundamental combustion research in seven areas including advanced engine concepts using low temperature fuel chemistry, new combustion phenomena in extreme conditions, alternative and surrogate fuels, multi-scale modeling, high pressure combustion kinetics, experimental methods and advanced combustion diagnostics Firstly, new engine concepts such as the Homogeneous Charge Compression Ignition (HCCI),","PeriodicalId":38383,"journal":{"name":"Advances in Mechanics","volume":"44 1","pages":"201402-201402"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Recent progress and challenges in fundamental combustion research\",\"authors\":\"琚诒光\",\"doi\":\"10.6052/1000-0992-14-011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"More than 80% of world energy is converted by combustion. Develop- ment of efficient next generation advanced engines by using alternative fuels and operating at extreme conditions is one of the most important solutions to increase energy sustainability. To realize the advanced engine design, the challenges in combustion research are therefore to advance fundamental understanding of com- bustion chemistry and dynamics from molecule scales to engine scales and to de- velop quantitatively predictive tools and innovative combustion technologies. This review will present the recent progresses and technical challenges in fundamental combustion research in seven areas including advanced engine concepts using low temperature fuel chemistry, new combustion phenomena in extreme conditions, alternative and surrogate fuels, multi-scale modeling, high pressure combustion kinetics, experimental methods and advanced combustion diagnostics Firstly, new engine concepts such as the Homogeneous Charge Compression Ignition (HCCI),\",\"PeriodicalId\":38383,\"journal\":{\"name\":\"Advances in Mechanics\",\"volume\":\"44 1\",\"pages\":\"201402-201402\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.6052/1000-0992-14-011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.6052/1000-0992-14-011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 21

摘要

世界上80%以上的能源是通过燃烧转化的。通过使用替代燃料和在极端条件下运行来开发高效的下一代先进发动机是提高能源可持续性的最重要解决方案之一。因此,为了实现先进的发动机设计,燃烧研究的挑战在于从分子尺度到发动机尺度推进对燃烧化学和动力学的基本理解,并开发定量预测工具和创新的燃烧技术。本文将从低温燃料化学的先进发动机概念、极端条件下的新型燃烧现象、替代燃料和替代燃料、多尺度建模、高压燃烧动力学、实验方法和先进燃烧诊断等七个方面介绍基础燃烧研究的最新进展和技术挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent progress and challenges in fundamental combustion research
More than 80% of world energy is converted by combustion. Develop- ment of efficient next generation advanced engines by using alternative fuels and operating at extreme conditions is one of the most important solutions to increase energy sustainability. To realize the advanced engine design, the challenges in combustion research are therefore to advance fundamental understanding of com- bustion chemistry and dynamics from molecule scales to engine scales and to de- velop quantitatively predictive tools and innovative combustion technologies. This review will present the recent progresses and technical challenges in fundamental combustion research in seven areas including advanced engine concepts using low temperature fuel chemistry, new combustion phenomena in extreme conditions, alternative and surrogate fuels, multi-scale modeling, high pressure combustion kinetics, experimental methods and advanced combustion diagnostics Firstly, new engine concepts such as the Homogeneous Charge Compression Ignition (HCCI),
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanics
Advances in Mechanics Mathematics-Mathematical Physics
CiteScore
3.40
自引率
0.00%
发文量
1074
期刊介绍: "Advances in Mechanics" is a comprehensive academic journal supervised by the Chinese Academy of Sciences and jointly sponsored by the Institute of Mechanics of the Chinese Academy of Sciences and the Chinese Society of Theoretical and Applied Mechanics, focusing on publishing high-level review articles in the field of mechanics, with special attention to the bidirection drive of mechanics and applications. Welcome articles facing the major national needs, from the perspective of engineering systems, summarize and analyze the research history and current situation of common or bottleneck mechanics issues, and have a foreseeable article about the future Welcome the forefront of mechanics, exploring new directions, new fields, and enlightening articles; Welcome in-depth summary of the mechanics results or lessons with important reference and reference value, so that the latecomers can better create and invented articles on the basis of the predecessors; Encourage creative ideas and suggestions for current important academic issues related to the development of mechanics.
期刊最新文献
The universal steady lift and drag theory and the physical origin of lift On supersonic combustion and hypersonic propulsion Mechanical thoughts and applications in cognitive neuroscience Aerothermal dynamic failure of infrared window in high-speed aircraft Medical image based hemodynamic analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1