S. Breitenbach, Dominik Knapic, C. Unterweger, Christian Fuerst
{"title":"银-氯化银参比电极木质素基多孔结","authors":"S. Breitenbach, Dominik Knapic, C. Unterweger, Christian Fuerst","doi":"10.5599/jese.1520","DOIUrl":null,"url":null,"abstract":"Carbonized lignin powder was used as a salt bridge for a silver-silver chloride reference electrode. This easy-to-prepare reference electrode exhibited excellent stability in saturated potassium chloride solution. In addition, the electrochemical impedance spectra showed that the prepared reference electrode is stable in acidic, neutral, and basic aqueous solutions (pH 1 - 12) and has similar impedances to its glass frit equivalent.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lignin-based porous junction for silver-silver chloride reference electrodes\",\"authors\":\"S. Breitenbach, Dominik Knapic, C. Unterweger, Christian Fuerst\",\"doi\":\"10.5599/jese.1520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbonized lignin powder was used as a salt bridge for a silver-silver chloride reference electrode. This easy-to-prepare reference electrode exhibited excellent stability in saturated potassium chloride solution. In addition, the electrochemical impedance spectra showed that the prepared reference electrode is stable in acidic, neutral, and basic aqueous solutions (pH 1 - 12) and has similar impedances to its glass frit equivalent.\",\"PeriodicalId\":15660,\"journal\":{\"name\":\"Journal of Electrochemical Science and Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/jese.1520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.1520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Lignin-based porous junction for silver-silver chloride reference electrodes
Carbonized lignin powder was used as a salt bridge for a silver-silver chloride reference electrode. This easy-to-prepare reference electrode exhibited excellent stability in saturated potassium chloride solution. In addition, the electrochemical impedance spectra showed that the prepared reference electrode is stable in acidic, neutral, and basic aqueous solutions (pH 1 - 12) and has similar impedances to its glass frit equivalent.