了解羟基磷灰石冷喷涂沉积技术

IF 2.9 Q2 ELECTROCHEMISTRY Journal of Electrochemical Science and Engineering Pub Date : 2023-01-01 DOI:10.5599/jese.1424
Gaurav Prashar, Hitesh Vasudev
{"title":"了解羟基磷灰石冷喷涂沉积技术","authors":"Gaurav Prashar, Hitesh Vasudev","doi":"10.5599/jese.1424","DOIUrl":null,"url":null,"abstract":"The standard method for applying hydroxyapatite (HAp) coatings to biomedical implants is plasma spraying. However, due to the high temperature of the plasma, these coatings frequently experience negative effects like evaporation, phase change, de-bonding, gas release, and residual stresses. This paper summarizes a revolutionary technique known as a cold spray (CS), which allows HAp coatings to be applied at temperatures well below their melting point. CS has several advantages over conventional high-temperature technologies, and it seems to be approaching parity with other older methods. When applied using the CS approach, the HAp coatings enhance bioactivity, increase corrosion resistance, and main­tain the characteristics of calcium phosphate ceramics. This study aims to give a concise and comprehensive overview of HAp-based materials, including substituted-HAp and HAp/poly­mer composites, and their applications in bone tissue engineering. To better understand the advantages of CS technology, a comparison of CS, high-velocity oxy-fuel (HVOF), and plasma spray is given at the end. The perspective and difficulties were also highlighted.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Understanding cold spray technology for hydroxyapatite deposition\",\"authors\":\"Gaurav Prashar, Hitesh Vasudev\",\"doi\":\"10.5599/jese.1424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard method for applying hydroxyapatite (HAp) coatings to biomedical implants is plasma spraying. However, due to the high temperature of the plasma, these coatings frequently experience negative effects like evaporation, phase change, de-bonding, gas release, and residual stresses. This paper summarizes a revolutionary technique known as a cold spray (CS), which allows HAp coatings to be applied at temperatures well below their melting point. CS has several advantages over conventional high-temperature technologies, and it seems to be approaching parity with other older methods. When applied using the CS approach, the HAp coatings enhance bioactivity, increase corrosion resistance, and main­tain the characteristics of calcium phosphate ceramics. This study aims to give a concise and comprehensive overview of HAp-based materials, including substituted-HAp and HAp/poly­mer composites, and their applications in bone tissue engineering. To better understand the advantages of CS technology, a comparison of CS, high-velocity oxy-fuel (HVOF), and plasma spray is given at the end. The perspective and difficulties were also highlighted.\",\"PeriodicalId\":15660,\"journal\":{\"name\":\"Journal of Electrochemical Science and Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/jese.1424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.1424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 6

摘要

将羟基磷灰石(HAp)涂层应用于生物医学植入物的标准方法是等离子喷涂。然而,由于等离子体的高温,这些涂层经常经历诸如蒸发、相变、脱键、气体释放和残余应力等负面影响。本文总结了一种被称为冷喷涂(CS)的革命性技术,该技术允许HAp涂层在远低于其熔点的温度下应用。与传统的高温技术相比,CS有几个优势,而且似乎与其他老方法不相上下。当使用CS方法应用时,HAp涂层增强了生物活性,提高了耐腐蚀性,并保持了磷酸钙陶瓷的特性。本文旨在对羟基磷灰石基材料,包括取代羟基磷灰石和羟基磷灰石/聚合物复合材料及其在骨组织工程中的应用进行简要、全面的综述。为了更好地理解CS技术的优点,最后对CS、高速氧燃料(HVOF)和等离子喷涂进行了比较。还强调了前景和困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding cold spray technology for hydroxyapatite deposition
The standard method for applying hydroxyapatite (HAp) coatings to biomedical implants is plasma spraying. However, due to the high temperature of the plasma, these coatings frequently experience negative effects like evaporation, phase change, de-bonding, gas release, and residual stresses. This paper summarizes a revolutionary technique known as a cold spray (CS), which allows HAp coatings to be applied at temperatures well below their melting point. CS has several advantages over conventional high-temperature technologies, and it seems to be approaching parity with other older methods. When applied using the CS approach, the HAp coatings enhance bioactivity, increase corrosion resistance, and main­tain the characteristics of calcium phosphate ceramics. This study aims to give a concise and comprehensive overview of HAp-based materials, including substituted-HAp and HAp/poly­mer composites, and their applications in bone tissue engineering. To better understand the advantages of CS technology, a comparison of CS, high-velocity oxy-fuel (HVOF), and plasma spray is given at the end. The perspective and difficulties were also highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
27.30%
发文量
90
审稿时长
6 weeks
期刊最新文献
Synthesis of graphene by electrochemical exfoliation from petroleum coke for electrochemical energy storage application Primary aluminum-air flow battery for high-power applications: Optimization of power and self-discharge Electrocatalytic response of nitrogen-doped hollow carbon spheres modified glassy carbon electrode for sulphite detection in water A model of chronoamperometry of a two electrons electro-deposition reaction with the adsorption of intermediate Computational materials discovery and development for Li and non-Li advanced battery chemistries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1