{"title":"R^N中高阶Fisher-KPP问题的半群理论及解的渐近轮廓","authors":"José Luis Díaz Palencia","doi":"10.58997/ejde.2023.04","DOIUrl":null,"url":null,"abstract":"We study a reaction-diffusion problem formulated with a higher-order operator, a non-linear advection, and a Fisher-KPP reaction term depending on the spatial variable. The higher-order operator induces solutions to oscillate in the proximity of an equilibrium condition. Given this oscillatory character, solutions are studied in a set of bounded domains. We introduce a new extension operator, that allows us to study the solutions in the open domain RN, but departing from a sequence of bounded domains. The analysis about regularity of solutions is built based on semigroup theory. In this approach, the solutions are interpreted as an abstract evolution given by a bounded continuous operator. Afterward, asymptotic profiles of solutions are studied based on a Hamilton-Jacobi equation that is obtained with a single point exponential scaling. Finally, a numerical assessment, with the function bvp4c in Matlab, is introduced to discuss on the validity of the hypothesis.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semigroup theory and asymptotic profiles of solutions for a higher-order Fisher-KPP problem in R^N\",\"authors\":\"José Luis Díaz Palencia\",\"doi\":\"10.58997/ejde.2023.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a reaction-diffusion problem formulated with a higher-order operator, a non-linear advection, and a Fisher-KPP reaction term depending on the spatial variable. The higher-order operator induces solutions to oscillate in the proximity of an equilibrium condition. Given this oscillatory character, solutions are studied in a set of bounded domains. We introduce a new extension operator, that allows us to study the solutions in the open domain RN, but departing from a sequence of bounded domains. The analysis about regularity of solutions is built based on semigroup theory. In this approach, the solutions are interpreted as an abstract evolution given by a bounded continuous operator. Afterward, asymptotic profiles of solutions are studied based on a Hamilton-Jacobi equation that is obtained with a single point exponential scaling. Finally, a numerical assessment, with the function bvp4c in Matlab, is introduced to discuss on the validity of the hypothesis.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.04\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.04","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Semigroup theory and asymptotic profiles of solutions for a higher-order Fisher-KPP problem in R^N
We study a reaction-diffusion problem formulated with a higher-order operator, a non-linear advection, and a Fisher-KPP reaction term depending on the spatial variable. The higher-order operator induces solutions to oscillate in the proximity of an equilibrium condition. Given this oscillatory character, solutions are studied in a set of bounded domains. We introduce a new extension operator, that allows us to study the solutions in the open domain RN, but departing from a sequence of bounded domains. The analysis about regularity of solutions is built based on semigroup theory. In this approach, the solutions are interpreted as an abstract evolution given by a bounded continuous operator. Afterward, asymptotic profiles of solutions are studied based on a Hamilton-Jacobi equation that is obtained with a single point exponential scaling. Finally, a numerical assessment, with the function bvp4c in Matlab, is introduced to discuss on the validity of the hypothesis.
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.