Í. Barreto, S. L. Russo, G. H. Brasil, Vitor Hugo Simon
{"title":"分离现象逻辑回归","authors":"Í. Barreto, S. L. Russo, G. H. Brasil, Vitor Hugo Simon","doi":"10.7198/GEINTEC.V4I1.378","DOIUrl":null,"url":null,"abstract":"This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score) and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score). It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.","PeriodicalId":51965,"journal":{"name":"Revista GEINTEC-Gestao Inovacao e Tecnologias","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"SEPARATION PHENOMENA LOGISTIC REGRESSION\",\"authors\":\"Í. Barreto, S. L. Russo, G. H. Brasil, Vitor Hugo Simon\",\"doi\":\"10.7198/GEINTEC.V4I1.378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score) and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score). It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.\",\"PeriodicalId\":51965,\"journal\":{\"name\":\"Revista GEINTEC-Gestao Inovacao e Tecnologias\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista GEINTEC-Gestao Inovacao e Tecnologias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7198/GEINTEC.V4I1.378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista GEINTEC-Gestao Inovacao e Tecnologias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7198/GEINTEC.V4I1.378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score) and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score). It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.