为伤口愈合量身定制的生物医学材料。

IF 6.3 1区 医学 Q1 DERMATOLOGY Burns & Trauma Pub Date : 2023-10-26 eCollection Date: 2023-01-01 DOI:10.1093/burnst/tkad040
Wenhui Liu, Lihua Zu, Shanzheng Wang, Jingyao Li, Xiaoyuan Fei, Meng Geng, Chunlei Zhu, Hui Shi
{"title":"为伤口愈合量身定制的生物医学材料。","authors":"Wenhui Liu, Lihua Zu, Shanzheng Wang, Jingyao Li, Xiaoyuan Fei, Meng Geng, Chunlei Zhu, Hui Shi","doi":"10.1093/burnst/tkad040","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing is a long-term, multi-stage biological process that mainly includes haemostatic, inflammatory, proliferative and tissue remodelling phases. Controlling infection and inflammation and promoting tissue regeneration can contribute well to wound healing. Smart biomaterials offer significant advantages in wound healing because of their ability to control wound healing in time and space. Understanding how biomaterials are designed for different stages of wound healing will facilitate future personalized material tailoring for different wounds, making them beneficial for wound therapy. This review summarizes the design approaches of biomaterials in the field of anti-inflammatory, antimicrobial and tissue regeneration, highlights the advanced precise control achieved by biomaterials in different stages of wound healing and outlines the clinical and practical applications of biomaterials in wound healing.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"11 ","pages":"tkad040"},"PeriodicalIF":6.3000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605015/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tailored biomedical materials for wound healing.\",\"authors\":\"Wenhui Liu, Lihua Zu, Shanzheng Wang, Jingyao Li, Xiaoyuan Fei, Meng Geng, Chunlei Zhu, Hui Shi\",\"doi\":\"10.1093/burnst/tkad040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wound healing is a long-term, multi-stage biological process that mainly includes haemostatic, inflammatory, proliferative and tissue remodelling phases. Controlling infection and inflammation and promoting tissue regeneration can contribute well to wound healing. Smart biomaterials offer significant advantages in wound healing because of their ability to control wound healing in time and space. Understanding how biomaterials are designed for different stages of wound healing will facilitate future personalized material tailoring for different wounds, making them beneficial for wound therapy. This review summarizes the design approaches of biomaterials in the field of anti-inflammatory, antimicrobial and tissue regeneration, highlights the advanced precise control achieved by biomaterials in different stages of wound healing and outlines the clinical and practical applications of biomaterials in wound healing.</p>\",\"PeriodicalId\":9553,\"journal\":{\"name\":\"Burns & Trauma\",\"volume\":\"11 \",\"pages\":\"tkad040\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605015/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Burns & Trauma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/burnst/tkad040\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkad040","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

伤口愈合是一个长期、多阶段的生物学过程,主要包括止血、炎症、增殖和组织重塑阶段。控制感染和炎症以及促进组织再生可以很好地促进伤口愈合。智能生物材料在伤口愈合方面具有显著优势,因为它们能够在时间和空间上控制伤口愈合。了解生物材料是如何为伤口愈合的不同阶段设计的,将有助于未来为不同伤口定制个性化材料,使其对伤口治疗有益。本文综述了生物材料在抗炎、抗菌和组织再生领域的设计方法,重点介绍了生物材料对伤口愈合不同阶段实现的先进精确控制,并概述了生物材料的临床和实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailored biomedical materials for wound healing.

Wound healing is a long-term, multi-stage biological process that mainly includes haemostatic, inflammatory, proliferative and tissue remodelling phases. Controlling infection and inflammation and promoting tissue regeneration can contribute well to wound healing. Smart biomaterials offer significant advantages in wound healing because of their ability to control wound healing in time and space. Understanding how biomaterials are designed for different stages of wound healing will facilitate future personalized material tailoring for different wounds, making them beneficial for wound therapy. This review summarizes the design approaches of biomaterials in the field of anti-inflammatory, antimicrobial and tissue regeneration, highlights the advanced precise control achieved by biomaterials in different stages of wound healing and outlines the clinical and practical applications of biomaterials in wound healing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Burns & Trauma
Burns & Trauma 医学-皮肤病学
CiteScore
8.40
自引率
9.40%
发文量
186
审稿时长
6 weeks
期刊介绍: The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.
期刊最新文献
SportSync health: revolutionizing patient care in sports medicine through integrated follow-up technologies. Dexmedetomidine regulates exosomal miR-29b-3p from macrophages and alleviates septic myocardial injury by promoting autophagy in cardiomyocytes via targeting glycogen synthase kinase 3β. Polylactic acid-based dressing with oxygen generation and enzyme-like activity for accelerating both light-driven biofilm elimination and wound healing Single-cell sequencing technology in skin wound healing Consensus on the prevention and repair of titanium mesh exposed wound after cranioplasty (2024 edition).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1