Weimin Yu, Qian Zhang, Yixiang Qiu, Hui Chen, Xiaoyang Huang, Li Xiao, Gang Xu, Siqi Li, Pingping Hu, Xiaoyong Tong
{"title":"CDN1163通过抑制肺动脉平滑肌细胞的表型转变来减轻SERCA2功能障碍诱导的肺血管重塑。","authors":"Weimin Yu, Qian Zhang, Yixiang Qiu, Hui Chen, Xiaoyang Huang, Li Xiao, Gang Xu, Siqi Li, Pingping Hu, Xiaoyong Tong","doi":"10.1080/10641963.2023.2272062","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Substitution of Cys<sup>674</sup> (C674) in the sarcoplasmic/endoplasmic reticulum Ca<sup>2+</sup> ATPase 2 (SERCA2) causes SERCA2 dysfunction which leads to activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway accelerating cell proliferation of pulmonary artery smooth muscle cells (PASMCs) followed by significant pulmonary vascular remodeling resembling human pulmonary hypertension. Based on this knowledge, we intend to investigate other potential mechanisms involved in SERCA2 dysfunction-induced pulmonary vascular remodeling.</p><p><strong>Experimental approach: </strong>Heterozygous SERCA2 C674S knock-in (SKI) mice of which half of cysteine in 674 was substituted by serine to mimic the partial irreversible oxidation of C674 were used. The lungs of SKI mice and their littermate wild-type mice were collected for PASMC culture, protein expression, and pulmonary vascular remodeling analysis.</p><p><strong>Results: </strong>SERCA2 dysfunction increased intracellular Ca<sup>2+</sup> levels, which activated Ca<sup>2+</sup>-dependent calcineurin (CaN) and promoted the nuclear translocation and protein expression of the nuclear factor of activated T-lymphocytes 4 (NFAT4) in an IRE1α/XBP1s pathway-independent manner. In SKI PASMCs, the scavenge of intracellular Ca<sup>2+</sup> by BAPTA-AM or inhibition of CaN by cyclosporin A can prevent PASMC phenotypic transition. CDN1163, a SERCA2 agonist, suppressed the activation of CaN/NFAT4 and IRE1α/XBP1s pathways, reversed the protein expression of PASMC phenotypic transition markers and cell cycle-related proteins, and inhibited cell proliferation and migration when given to SKI PASMCs. Furthermore, CDN1163 ameliorated pulmonary vascular remodeling in SKI mice.</p><p><strong>Conclusions and implications: </strong>SERCA2 dysfunction promotes PASMC phenotypic transition and pulmonary vascular remodeling by multiple mechanisms, which could be improved by SERCA2 agonist CDN1163.</p>","PeriodicalId":10333,"journal":{"name":"Clinical and Experimental Hypertension","volume":"45 1","pages":"2272062"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CDN1163 alleviates SERCA2 dysfunction-induced pulmonary vascular remodeling by inhibiting the phenotypic transition of pulmonary artery smooth muscle cells.\",\"authors\":\"Weimin Yu, Qian Zhang, Yixiang Qiu, Hui Chen, Xiaoyang Huang, Li Xiao, Gang Xu, Siqi Li, Pingping Hu, Xiaoyong Tong\",\"doi\":\"10.1080/10641963.2023.2272062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Substitution of Cys<sup>674</sup> (C674) in the sarcoplasmic/endoplasmic reticulum Ca<sup>2+</sup> ATPase 2 (SERCA2) causes SERCA2 dysfunction which leads to activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway accelerating cell proliferation of pulmonary artery smooth muscle cells (PASMCs) followed by significant pulmonary vascular remodeling resembling human pulmonary hypertension. Based on this knowledge, we intend to investigate other potential mechanisms involved in SERCA2 dysfunction-induced pulmonary vascular remodeling.</p><p><strong>Experimental approach: </strong>Heterozygous SERCA2 C674S knock-in (SKI) mice of which half of cysteine in 674 was substituted by serine to mimic the partial irreversible oxidation of C674 were used. The lungs of SKI mice and their littermate wild-type mice were collected for PASMC culture, protein expression, and pulmonary vascular remodeling analysis.</p><p><strong>Results: </strong>SERCA2 dysfunction increased intracellular Ca<sup>2+</sup> levels, which activated Ca<sup>2+</sup>-dependent calcineurin (CaN) and promoted the nuclear translocation and protein expression of the nuclear factor of activated T-lymphocytes 4 (NFAT4) in an IRE1α/XBP1s pathway-independent manner. In SKI PASMCs, the scavenge of intracellular Ca<sup>2+</sup> by BAPTA-AM or inhibition of CaN by cyclosporin A can prevent PASMC phenotypic transition. CDN1163, a SERCA2 agonist, suppressed the activation of CaN/NFAT4 and IRE1α/XBP1s pathways, reversed the protein expression of PASMC phenotypic transition markers and cell cycle-related proteins, and inhibited cell proliferation and migration when given to SKI PASMCs. Furthermore, CDN1163 ameliorated pulmonary vascular remodeling in SKI mice.</p><p><strong>Conclusions and implications: </strong>SERCA2 dysfunction promotes PASMC phenotypic transition and pulmonary vascular remodeling by multiple mechanisms, which could be improved by SERCA2 agonist CDN1163.</p>\",\"PeriodicalId\":10333,\"journal\":{\"name\":\"Clinical and Experimental Hypertension\",\"volume\":\"45 1\",\"pages\":\"2272062\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Hypertension\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10641963.2023.2272062\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Hypertension","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10641963.2023.2272062","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
CDN1163 alleviates SERCA2 dysfunction-induced pulmonary vascular remodeling by inhibiting the phenotypic transition of pulmonary artery smooth muscle cells.
Background and purpose: Substitution of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes SERCA2 dysfunction which leads to activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway accelerating cell proliferation of pulmonary artery smooth muscle cells (PASMCs) followed by significant pulmonary vascular remodeling resembling human pulmonary hypertension. Based on this knowledge, we intend to investigate other potential mechanisms involved in SERCA2 dysfunction-induced pulmonary vascular remodeling.
Experimental approach: Heterozygous SERCA2 C674S knock-in (SKI) mice of which half of cysteine in 674 was substituted by serine to mimic the partial irreversible oxidation of C674 were used. The lungs of SKI mice and their littermate wild-type mice were collected for PASMC culture, protein expression, and pulmonary vascular remodeling analysis.
Results: SERCA2 dysfunction increased intracellular Ca2+ levels, which activated Ca2+-dependent calcineurin (CaN) and promoted the nuclear translocation and protein expression of the nuclear factor of activated T-lymphocytes 4 (NFAT4) in an IRE1α/XBP1s pathway-independent manner. In SKI PASMCs, the scavenge of intracellular Ca2+ by BAPTA-AM or inhibition of CaN by cyclosporin A can prevent PASMC phenotypic transition. CDN1163, a SERCA2 agonist, suppressed the activation of CaN/NFAT4 and IRE1α/XBP1s pathways, reversed the protein expression of PASMC phenotypic transition markers and cell cycle-related proteins, and inhibited cell proliferation and migration when given to SKI PASMCs. Furthermore, CDN1163 ameliorated pulmonary vascular remodeling in SKI mice.
Conclusions and implications: SERCA2 dysfunction promotes PASMC phenotypic transition and pulmonary vascular remodeling by multiple mechanisms, which could be improved by SERCA2 agonist CDN1163.
期刊介绍:
Clinical and Experimental Hypertension is a reputable journal that has converted to a full Open Access format starting from Volume 45 in 2023. While previous volumes are still accessible through a Pay to Read model, the journal now provides free and open access to its content. It serves as an international platform for the exchange of up-to-date scientific and clinical information concerning both human and animal hypertension. The journal publishes a wide range of articles, including full research papers, solicited and unsolicited reviews, and commentaries. Through these publications, the journal aims to enhance current understanding and support the timely detection, management, control, and prevention of hypertension-related conditions.
One notable aspect of Clinical and Experimental Hypertension is its coverage of special issues that focus on the proceedings of symposia dedicated to hypertension research. This feature allows researchers and clinicians to delve deeper into the latest advancements in this field.
The journal is abstracted and indexed in several renowned databases, including Pharmacoeconomics and Outcomes News (Online), Reactions Weekly (Online), CABI, EBSCOhost, Elsevier BV, International Atomic Energy Agency, and the National Library of Medicine, among others. These affiliations ensure that the journal's content receives broad visibility and facilitates its discoverability by professionals and researchers in related disciplines.