Shu-Fu Lin, Yi-Yin Lee, Ming-Hsien Wu, Yu-Ling Lu, Chun-Nan Yeh, Wei-Yi Chen, Ting-Chao Chou, Richard J Wong
{"title":"分化型甲状腺癌症中ATR的治疗抑制作用。","authors":"Shu-Fu Lin, Yi-Yin Lee, Ming-Hsien Wu, Yu-Ling Lu, Chun-Nan Yeh, Wei-Yi Chen, Ting-Chao Chou, Richard J Wong","doi":"10.1530/ERC-23-0142","DOIUrl":null,"url":null,"abstract":"<p><p>Ataxia telangiectasia and Rad3-related protein (ATR) is a critical component of the DNA damage response and a potential target in the treatment of cancers. An ATR inhibitor, BAY 1895344, was evaluated for its use in differentiated thyroid cancer (DTC) therapy. BAY 1895344 inhibited cell viability in four DTC cell lines (TPC1, K1, FTC-133, and FTC-238) in a dose-dependent manner. BAY 1895344 treatment arrested DTC cells in the G2/M phase, increased caspase-3 activity, and caused apoptosis. BAY 1895344 in combination with either sorafenib or lenvatinib showed mainly synergistic effects in four DTC cell lines. The combination of BAY 1895344 with dabrafenib plus trametinib revealed synergistic effects in K1 cells that harbor BRAFV600E. BAY 1895344 monotherapy retarded the growth of K1 and FTC-133 tumors in xenograft models. The combinations of BAY 1895344 plus lenvatinib and BAY 1895344 with dabrafenib plus trametinib were more effective than any single therapy in a K1 xenograft model. No appreciable toxicity appeared in animals treated with either a single therapy or a combination treatment. Our findings provide the rationale for the development of clinical trials of BAY 1895344 in the treatment of DTC.</p>","PeriodicalId":93989,"journal":{"name":"Endocrine-related cancer","volume":"30 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271744/pdf/","citationCount":"0","resultStr":"{\"title\":\"Therapeutic inhibition of ATR in differentiated thyroid cancer.\",\"authors\":\"Shu-Fu Lin, Yi-Yin Lee, Ming-Hsien Wu, Yu-Ling Lu, Chun-Nan Yeh, Wei-Yi Chen, Ting-Chao Chou, Richard J Wong\",\"doi\":\"10.1530/ERC-23-0142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ataxia telangiectasia and Rad3-related protein (ATR) is a critical component of the DNA damage response and a potential target in the treatment of cancers. An ATR inhibitor, BAY 1895344, was evaluated for its use in differentiated thyroid cancer (DTC) therapy. BAY 1895344 inhibited cell viability in four DTC cell lines (TPC1, K1, FTC-133, and FTC-238) in a dose-dependent manner. BAY 1895344 treatment arrested DTC cells in the G2/M phase, increased caspase-3 activity, and caused apoptosis. BAY 1895344 in combination with either sorafenib or lenvatinib showed mainly synergistic effects in four DTC cell lines. The combination of BAY 1895344 with dabrafenib plus trametinib revealed synergistic effects in K1 cells that harbor BRAFV600E. BAY 1895344 monotherapy retarded the growth of K1 and FTC-133 tumors in xenograft models. The combinations of BAY 1895344 plus lenvatinib and BAY 1895344 with dabrafenib plus trametinib were more effective than any single therapy in a K1 xenograft model. No appreciable toxicity appeared in animals treated with either a single therapy or a combination treatment. Our findings provide the rationale for the development of clinical trials of BAY 1895344 in the treatment of DTC.</p>\",\"PeriodicalId\":93989,\"journal\":{\"name\":\"Endocrine-related cancer\",\"volume\":\"30 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271744/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine-related cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1530/ERC-23-0142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine-related cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1530/ERC-23-0142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
Therapeutic inhibition of ATR in differentiated thyroid cancer.
Ataxia telangiectasia and Rad3-related protein (ATR) is a critical component of the DNA damage response and a potential target in the treatment of cancers. An ATR inhibitor, BAY 1895344, was evaluated for its use in differentiated thyroid cancer (DTC) therapy. BAY 1895344 inhibited cell viability in four DTC cell lines (TPC1, K1, FTC-133, and FTC-238) in a dose-dependent manner. BAY 1895344 treatment arrested DTC cells in the G2/M phase, increased caspase-3 activity, and caused apoptosis. BAY 1895344 in combination with either sorafenib or lenvatinib showed mainly synergistic effects in four DTC cell lines. The combination of BAY 1895344 with dabrafenib plus trametinib revealed synergistic effects in K1 cells that harbor BRAFV600E. BAY 1895344 monotherapy retarded the growth of K1 and FTC-133 tumors in xenograft models. The combinations of BAY 1895344 plus lenvatinib and BAY 1895344 with dabrafenib plus trametinib were more effective than any single therapy in a K1 xenograft model. No appreciable toxicity appeared in animals treated with either a single therapy or a combination treatment. Our findings provide the rationale for the development of clinical trials of BAY 1895344 in the treatment of DTC.