Mingcui Ding , Chengpeng Zhang , Wei Wang , Pengpeng Wang , Yangqing Pei , Na Wang , Shan Huang , Changfu Hao , Wu Yao
{"title":"二氧化硅暴露的巨噬细胞分泌的外泌体miR125a-5p诱导Th1/Th2和Treg/Th17细胞失衡,并促进成纤维细胞转分化。","authors":"Mingcui Ding , Chengpeng Zhang , Wei Wang , Pengpeng Wang , Yangqing Pei , Na Wang , Shan Huang , Changfu Hao , Wu Yao","doi":"10.1016/j.ecoenv.2023.115647","DOIUrl":null,"url":null,"abstract":"<div><p>Until now, the specific pathogenesis of silicosis is not clear. Exosomal miRNAs, as a newly discovered intercellular communication medium, play an important role in many diseases. Our previous research found that serum exosomal miR125a-5p was increased in silicosis patients by miRNAs high-throughput sequencing. TRAF6, is a target gene of miR125a-5p, which is involved in T-cell differentiation. Furthermore, results from animal study indicate that knockdown of miR-125a-5p can regulate T lymphocyte subsets and significantly reduce pulmonary fibrosis by targeting TRAF6. However, the level of serum exosomal miR125a-5p in silicosis patients has not been reported, the role of macrophages-secreted exosomal miR-125a-5p in regulating T cell differentiation to promote fibroblast transdifferentiation (FMT) remains unknown. In this study, the levels of serum exosomal miR125a-5p and serum TGF-β1, IL-17A, IL-4 cytokines in silicosis patients were elevated, with the progression of silicosis, the level of serum exosomal miR125a-5p and serum IL-4 were increased; thus, the serum level of IFN-γ was negatively correlated with the progression of silicosis. <em>In vitro</em>, the levels of miR125a-5p in macrophages, exosomes, and T cells stimulated by silica were significantly increased. When the mimic was transfected into T cells, which directly suppressed TRAF6 and caused the imbalance of T cells differentiation, induced FMT. To sum up, these results indicate that exosomal miR-125a-5p may by targeting TRAF6 of T cells, induces the activation and apoptosis of T cells and the remodeling of Th1/Th2 and Th17/Tregs distribution, ultimately promotes FMT. Suggesting that exosomal miR-125a-5p may be a potential therapeutic target for silicosis.</p></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"267 ","pages":"Article 115647"},"PeriodicalIF":6.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S014765132301151X/pdfft?md5=a417732c27f4544051f295509b8fa608&pid=1-s2.0-S014765132301151X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Silica-exposed macrophages-secreted exosomal miR125a-5p induces Th1/Th2 and Treg/Th17 cell imbalance and promotes fibroblast transdifferentiation\",\"authors\":\"Mingcui Ding , Chengpeng Zhang , Wei Wang , Pengpeng Wang , Yangqing Pei , Na Wang , Shan Huang , Changfu Hao , Wu Yao\",\"doi\":\"10.1016/j.ecoenv.2023.115647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Until now, the specific pathogenesis of silicosis is not clear. Exosomal miRNAs, as a newly discovered intercellular communication medium, play an important role in many diseases. Our previous research found that serum exosomal miR125a-5p was increased in silicosis patients by miRNAs high-throughput sequencing. TRAF6, is a target gene of miR125a-5p, which is involved in T-cell differentiation. Furthermore, results from animal study indicate that knockdown of miR-125a-5p can regulate T lymphocyte subsets and significantly reduce pulmonary fibrosis by targeting TRAF6. However, the level of serum exosomal miR125a-5p in silicosis patients has not been reported, the role of macrophages-secreted exosomal miR-125a-5p in regulating T cell differentiation to promote fibroblast transdifferentiation (FMT) remains unknown. In this study, the levels of serum exosomal miR125a-5p and serum TGF-β1, IL-17A, IL-4 cytokines in silicosis patients were elevated, with the progression of silicosis, the level of serum exosomal miR125a-5p and serum IL-4 were increased; thus, the serum level of IFN-γ was negatively correlated with the progression of silicosis. <em>In vitro</em>, the levels of miR125a-5p in macrophages, exosomes, and T cells stimulated by silica were significantly increased. When the mimic was transfected into T cells, which directly suppressed TRAF6 and caused the imbalance of T cells differentiation, induced FMT. To sum up, these results indicate that exosomal miR-125a-5p may by targeting TRAF6 of T cells, induces the activation and apoptosis of T cells and the remodeling of Th1/Th2 and Th17/Tregs distribution, ultimately promotes FMT. Suggesting that exosomal miR-125a-5p may be a potential therapeutic target for silicosis.</p></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"267 \",\"pages\":\"Article 115647\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S014765132301151X/pdfft?md5=a417732c27f4544051f295509b8fa608&pid=1-s2.0-S014765132301151X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014765132301151X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014765132301151X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Silica-exposed macrophages-secreted exosomal miR125a-5p induces Th1/Th2 and Treg/Th17 cell imbalance and promotes fibroblast transdifferentiation
Until now, the specific pathogenesis of silicosis is not clear. Exosomal miRNAs, as a newly discovered intercellular communication medium, play an important role in many diseases. Our previous research found that serum exosomal miR125a-5p was increased in silicosis patients by miRNAs high-throughput sequencing. TRAF6, is a target gene of miR125a-5p, which is involved in T-cell differentiation. Furthermore, results from animal study indicate that knockdown of miR-125a-5p can regulate T lymphocyte subsets and significantly reduce pulmonary fibrosis by targeting TRAF6. However, the level of serum exosomal miR125a-5p in silicosis patients has not been reported, the role of macrophages-secreted exosomal miR-125a-5p in regulating T cell differentiation to promote fibroblast transdifferentiation (FMT) remains unknown. In this study, the levels of serum exosomal miR125a-5p and serum TGF-β1, IL-17A, IL-4 cytokines in silicosis patients were elevated, with the progression of silicosis, the level of serum exosomal miR125a-5p and serum IL-4 were increased; thus, the serum level of IFN-γ was negatively correlated with the progression of silicosis. In vitro, the levels of miR125a-5p in macrophages, exosomes, and T cells stimulated by silica were significantly increased. When the mimic was transfected into T cells, which directly suppressed TRAF6 and caused the imbalance of T cells differentiation, induced FMT. To sum up, these results indicate that exosomal miR-125a-5p may by targeting TRAF6 of T cells, induces the activation and apoptosis of T cells and the remodeling of Th1/Th2 and Th17/Tregs distribution, ultimately promotes FMT. Suggesting that exosomal miR-125a-5p may be a potential therapeutic target for silicosis.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.