金黄色葡萄球菌LytM催化结构域的化学位移分配。

IF 0.8 4区 生物学 Q4 BIOPHYSICS Biomolecular NMR Assignments Pub Date : 2023-11-02 DOI:10.1007/s12104-023-10161-3
Helena Tossavainen, Ilona Pitkänen, Lina Antenucci, Chandan Thapa, Perttu Permi
{"title":"金黄色葡萄球菌LytM催化结构域的化学位移分配。","authors":"Helena Tossavainen,&nbsp;Ilona Pitkänen,&nbsp;Lina Antenucci,&nbsp;Chandan Thapa,&nbsp;Perttu Permi","doi":"10.1007/s12104-023-10161-3","DOIUrl":null,"url":null,"abstract":"<div><p><i>S. aureus</i> resistance to antibiotics has increased rapidly. MRSA strains can simultaneously be resistant to many different classes of antibiotics, including the so-called “last-resort” drugs. Resistance complicates treatment, increases mortality and substantially increases the cost of treatment. The need for new drugs against (multi)resistant <i>S. aureus</i> is high. M23B family peptidoglycan hydrolases, enzymes that can kill <i>S. aureus</i> by cleaving glycine-glycine peptide bonds in <i>S. aureus</i> cell wall are attractive targets for drug development because of their binding specificity and lytic activity. M23B enzymes lysostaphin, LytU and LytM have closely similar catalytic domain structures. They however differ in their lytic activities, which can arise from non-conserved residues in the catalytic groove and surrounding loops or differences in dynamics. We report here the near complete <sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N resonance assignment of the catalytic domain of LytM, residues 185–316. The chemical shift data allow comparative structural and functional studies between the enzymes and is essential for understanding how these hydrolases degrade the cell wall.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"1 - 5"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082022/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chemical shift assignments of the catalytic domain of Staphylococcus aureus LytM\",\"authors\":\"Helena Tossavainen,&nbsp;Ilona Pitkänen,&nbsp;Lina Antenucci,&nbsp;Chandan Thapa,&nbsp;Perttu Permi\",\"doi\":\"10.1007/s12104-023-10161-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>S. aureus</i> resistance to antibiotics has increased rapidly. MRSA strains can simultaneously be resistant to many different classes of antibiotics, including the so-called “last-resort” drugs. Resistance complicates treatment, increases mortality and substantially increases the cost of treatment. The need for new drugs against (multi)resistant <i>S. aureus</i> is high. M23B family peptidoglycan hydrolases, enzymes that can kill <i>S. aureus</i> by cleaving glycine-glycine peptide bonds in <i>S. aureus</i> cell wall are attractive targets for drug development because of their binding specificity and lytic activity. M23B enzymes lysostaphin, LytU and LytM have closely similar catalytic domain structures. They however differ in their lytic activities, which can arise from non-conserved residues in the catalytic groove and surrounding loops or differences in dynamics. We report here the near complete <sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N resonance assignment of the catalytic domain of LytM, residues 185–316. The chemical shift data allow comparative structural and functional studies between the enzymes and is essential for understanding how these hydrolases degrade the cell wall.</p></div>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":\"18 1\",\"pages\":\"1 - 5\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082022/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12104-023-10161-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-023-10161-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

金黄色葡萄球菌对抗生素的耐药性迅速增加。耐甲氧西林金黄色葡萄球菌菌株可以同时对许多不同种类的抗生素产生耐药性,包括所谓的“最后手段”药物。耐药性使治疗复杂化,增加死亡率,并大大增加治疗成本。对抗(多重)耐药性金黄色葡萄球菌新药的需求很高。M23B家族肽聚糖水解酶是一种可以通过裂解金黄色葡萄球菌细胞壁中的甘氨酸-甘氨酸肽键来杀死金黄色葡萄菌的酶,由于其结合特异性和裂解活性,是药物开发的有吸引力的靶点。M23B酶溶酶体蛋白酶、LytU和LytM具有非常相似的催化结构域结构。然而,它们的裂解活性不同,这可能是由催化槽和周围环中的非保守残基或动力学差异引起的。我们在这里报道了LytM的催化结构域残基185-316的几乎完全的1H/13C/15N共振分配。化学位移数据允许对酶之间的结构和功能进行比较研究,对于了解这些水解酶如何降解细胞壁至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemical shift assignments of the catalytic domain of Staphylococcus aureus LytM

S. aureus resistance to antibiotics has increased rapidly. MRSA strains can simultaneously be resistant to many different classes of antibiotics, including the so-called “last-resort” drugs. Resistance complicates treatment, increases mortality and substantially increases the cost of treatment. The need for new drugs against (multi)resistant S. aureus is high. M23B family peptidoglycan hydrolases, enzymes that can kill S. aureus by cleaving glycine-glycine peptide bonds in S. aureus cell wall are attractive targets for drug development because of their binding specificity and lytic activity. M23B enzymes lysostaphin, LytU and LytM have closely similar catalytic domain structures. They however differ in their lytic activities, which can arise from non-conserved residues in the catalytic groove and surrounding loops or differences in dynamics. We report here the near complete 1H/13C/15N resonance assignment of the catalytic domain of LytM, residues 185–316. The chemical shift data allow comparative structural and functional studies between the enzymes and is essential for understanding how these hydrolases degrade the cell wall.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
期刊最新文献
1H, 15N and 13C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles. Backbone 1H, 15N, and 13C resonance assignments of the FF1 domain from P190A RhoGAP in 5 and 8 M urea Imino chemical shift assignments of tRNAAsp, tRNAVal and tRNAPhe from Escherichia coli NMR assignment of the conserved bacterial DNA replication protein DnaA domain IV Backbone assignments of the biotin carboxyl carrier protein domain of Propionyl CoA carboxylase of Leishmania major and its interaction with its cognate Biotin protein ligase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1