磁悬浮全人工心脏双心室分流对泵特性的影响。

IF 1.4 4区 医学 Q4 ENGINEERING, BIOMEDICAL International Journal of Artificial Organs Pub Date : 2023-12-01 Epub Date: 2023-10-31 DOI:10.1177/03913988231209010
Shuya Shida, Kenichi Tsushima, Masahiro Osa, Daniel L Timms, Toru Masuzawa
{"title":"磁悬浮全人工心脏双心室分流对泵特性的影响。","authors":"Shuya Shida, Kenichi Tsushima, Masahiro Osa, Daniel L Timms, Toru Masuzawa","doi":"10.1177/03913988231209010","DOIUrl":null,"url":null,"abstract":"<p><p>Severe left ventricular failure can progress to right ventricular failure, necessitating alternatives to heart transplantation, such as total artificial heart (TAH) treatment. Conventional TAHs encounter challenges associated with miniaturization and hemocompatibility owing to their reliance on mechanical valves and bearings. A magnetically levitated TAH (IB-Heart) was developed, utilizing a magnetic bearing. The IB-Heart features a distinctive biventricular shunt channel situated between the flow paths of the left and right centrifugal blood pumps, simplifying and miniaturizing its control system. However, the impact of these shunt channels remains underexplored. This study aimed to investigate the effects of shunt flow on pump characteristics and assess the IB-Heart's potential to regulate flow balance between systemic and pulmonary circulation. At a rotational speed of 2000 rpm and flow rate range of 0-10 L/min, shunt flow exhibited a minor impact, with a 1.4 mmHg (1.3%) effect on pump characteristics. Shunt flow variation of about 0.13 L/min correlated with a 10 mmHg pressure difference between the pumps' afterload and preload conditions. This variance was linked to changes in the inlet flow rates of the left and right pumps, signifying the ventricular shunt structure's capacity to mirror the function of an atrial shunt in alleviating pulmonary congestion. The IB-Heart's ventricular shunt structure enables passive regulation of left-right flow balance. The findings establish a fundamental technical groundwork for the development of IB-Hearts and TAHs with similar shunt structures. The innovative coupling of centrifugal pumps and the resultant effects on flow dynamics contribute to the advancement of TAH technology.</p>","PeriodicalId":13932,"journal":{"name":"International Journal of Artificial Organs","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of biventricular shunt on pump characteristics in a maglev total artificial heart.\",\"authors\":\"Shuya Shida, Kenichi Tsushima, Masahiro Osa, Daniel L Timms, Toru Masuzawa\",\"doi\":\"10.1177/03913988231209010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Severe left ventricular failure can progress to right ventricular failure, necessitating alternatives to heart transplantation, such as total artificial heart (TAH) treatment. Conventional TAHs encounter challenges associated with miniaturization and hemocompatibility owing to their reliance on mechanical valves and bearings. A magnetically levitated TAH (IB-Heart) was developed, utilizing a magnetic bearing. The IB-Heart features a distinctive biventricular shunt channel situated between the flow paths of the left and right centrifugal blood pumps, simplifying and miniaturizing its control system. However, the impact of these shunt channels remains underexplored. This study aimed to investigate the effects of shunt flow on pump characteristics and assess the IB-Heart's potential to regulate flow balance between systemic and pulmonary circulation. At a rotational speed of 2000 rpm and flow rate range of 0-10 L/min, shunt flow exhibited a minor impact, with a 1.4 mmHg (1.3%) effect on pump characteristics. Shunt flow variation of about 0.13 L/min correlated with a 10 mmHg pressure difference between the pumps' afterload and preload conditions. This variance was linked to changes in the inlet flow rates of the left and right pumps, signifying the ventricular shunt structure's capacity to mirror the function of an atrial shunt in alleviating pulmonary congestion. The IB-Heart's ventricular shunt structure enables passive regulation of left-right flow balance. The findings establish a fundamental technical groundwork for the development of IB-Hearts and TAHs with similar shunt structures. The innovative coupling of centrifugal pumps and the resultant effects on flow dynamics contribute to the advancement of TAH technology.</p>\",\"PeriodicalId\":13932,\"journal\":{\"name\":\"International Journal of Artificial Organs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Artificial Organs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03913988231209010\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03913988231209010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

严重的左心室衰竭可能发展为右心室衰竭,需要心脏移植的替代方案,如全人工心脏(TAH)治疗。传统的TAH由于依赖于机械瓣膜和轴承而遇到与小型化和血液相容性相关的挑战。利用磁性轴承开发了磁悬浮TAH(IB Heart)。IB Heart具有独特的双心室分流通道,位于左右离心式血泵的流动路径之间,简化了其控制系统并使其小型化。然而,这些分流通道的影响仍然没有得到充分的探索。本研究旨在研究分流对泵特性的影响,并评估IB心脏调节体循环和肺循环之间流量平衡的潜力。转速为2000 转速和0-10的流速范围 L/min,分流表现出较小的影响 mmHg(1.3%)对泵特性的影响。分流变化约0.13 L/min与10 泵的后负荷和预负荷条件之间的压差为mmHg。这种变化与左泵和右泵入口流速的变化有关,这表明心室分流结构有能力反映心房分流在缓解肺充血方面的功能。IB心脏的心室分流结构能够被动调节左右血流平衡。这些发现为开发具有类似分流结构的IB心脏和TAH奠定了基本的技术基础。离心泵的创新耦合及其对流动动力学的影响有助于TAH技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of biventricular shunt on pump characteristics in a maglev total artificial heart.

Severe left ventricular failure can progress to right ventricular failure, necessitating alternatives to heart transplantation, such as total artificial heart (TAH) treatment. Conventional TAHs encounter challenges associated with miniaturization and hemocompatibility owing to their reliance on mechanical valves and bearings. A magnetically levitated TAH (IB-Heart) was developed, utilizing a magnetic bearing. The IB-Heart features a distinctive biventricular shunt channel situated between the flow paths of the left and right centrifugal blood pumps, simplifying and miniaturizing its control system. However, the impact of these shunt channels remains underexplored. This study aimed to investigate the effects of shunt flow on pump characteristics and assess the IB-Heart's potential to regulate flow balance between systemic and pulmonary circulation. At a rotational speed of 2000 rpm and flow rate range of 0-10 L/min, shunt flow exhibited a minor impact, with a 1.4 mmHg (1.3%) effect on pump characteristics. Shunt flow variation of about 0.13 L/min correlated with a 10 mmHg pressure difference between the pumps' afterload and preload conditions. This variance was linked to changes in the inlet flow rates of the left and right pumps, signifying the ventricular shunt structure's capacity to mirror the function of an atrial shunt in alleviating pulmonary congestion. The IB-Heart's ventricular shunt structure enables passive regulation of left-right flow balance. The findings establish a fundamental technical groundwork for the development of IB-Hearts and TAHs with similar shunt structures. The innovative coupling of centrifugal pumps and the resultant effects on flow dynamics contribute to the advancement of TAH technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Artificial Organs
International Journal of Artificial Organs 医学-工程:生物医学
CiteScore
3.40
自引率
5.90%
发文量
92
审稿时长
3 months
期刊介绍: The International Journal of Artificial Organs (IJAO) publishes peer-reviewed research and clinical, experimental and theoretical, contributions to the field of artificial, bioartificial and tissue-engineered organs. The mission of the IJAO is to foster the development and optimization of artificial, bioartificial and tissue-engineered organs, for implantation or use in procedures, to treat functional deficits of all human tissues and organs.
期刊最新文献
Performance study of dual heart assisted control system based on SL-SMC physiological combination controller. Depurative capacity toward medium molecules of the dialyzer Toray NV-U® Hydrolink™: A new hydrophilic membrane to perform online hemodiafiltration. Assessment of haemolysis models for a positive-displacement total artificial heart. Dynamic VAD simulations: Performing accurate simulations of ventricular assist devices in interaction with the cardiovascular system. Flexible inner surface of polysulfone membranes prevents platelet adhesive protein adsorption and improves antithrombogenicity in vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1